SAND2016- 12875R

IDC RE-ENGINEERING REPORT

SAND2016-WXYZ
Unlimited Release
December, 2016

IDC Re-Engineering Phase 2 Iteration E1
Use Case Realizations

Version 1.2

J. Mark Harris, John F. Burns, Benjamin R. Hamlet, Mark S. Montoya, Rudy D.
Sandoval

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories




Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof, nor
any of their employees, nor any of their contractors, subcontractors, or their employees, make
any warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.




SAND2016-WXYZ
Unlimited Release
December, 2016

IDC Re-Engineering Phase 2 Iteration E1
Use Case Realizations

Version 1.2

J. Mark Harris, John F. Burns, Rudy D. Sandoval
Dynamic Monitoring Software

Benjamin R. Hamlet, Mark S. Montoya
Ground System Development

Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-MS0401

Abstract
This document contains 4 use case realizations generated from the model contained in

Rational Software Architect. These use case realizations are the current versions of the
realizations originally delivered in Elaboration Iteration 1.



REVISIONS

Version Date Author/Team Revision Description Authorized
by

1.0 10/12/2015 | SNL IDC Re-Engineering | Initial Release for E1 | M. Harris
Team

1.1 12/17/2015 | SNL IDC Re-Engineering | Release for E1 M. Harris
Team

1.2 12/16/2016 | SNL IDC Re-Engineering | Release for the end of | M. Harris
Team the Elaboration Phase




TABLE OF CONTENTS

Use Case Hierarchy.............ooooiiiiiiiiiiiiiiiiieeeee e 6
UCR-02 System Detects Event...........ooooiiiiiiiiiiiiieeeeecee e, 9
UCR-02.08 System Refines Event Location.............ccccceeeeiiiiiiennnnnne. 39
UCR-03.02 Refines EVent.........cccouvviiiiiiiiiiiie et 57
UCR-08.05 Views Event HiStory.........cccccuvveeiiiiiiiiiiiiiiiiiiieeeeee e 101



Use Case Hierarchy

The IDC Use Case Hierarchy is shown here. The use cases highlighted in yellow are the use case
realizations that appear in this document.

1 System Acquires Data

1.1 System Receives Station Data

1.2 System Receives Bulletin Data

1.3 System Automatically Distributes Data

1.4 System Acquires Meteorological Data

1.5 System Synchronizes Acquired Station Data
1.6 System Synchronizes Processing Results

2 System Detects Event

2.1 System Determines Waveform Data Quality
2.2 System Enhances Signals

2.3 System Detects Events using Waveform Correlation
2.4 System Detects Signals

2.5 System Measures Signal Features

2.6 System Builds Events using Signal Detections
2.7 System Resolves Event Conflicts

2.8 System Refines Event Location

2.9 System Refines Event Magnitude

2.10 System Evaluates Moment Tensor

2.11 System Finds Similar Events

2.12 System Predicts Signal Features

3 Analyzes Events

3.1 Selects Data for Analysis

3.2 Refines Event

3.2.1 Determines Waveform Data Quality

3.2.2 Enhances Signals
3.2.3 Detects Signals

3.2.4 Measures Signal Features

3.2.5 Refines Event Location

3.2.6 Refines Event Magnitude

3.2.7 Evaluates Moment Tensor

3.2.8 Compares Events

33 Scans Waveforms and Unassociated Detections
3.4 Builds Event

3.5 Marks Processing Stage Complete

4 N/A

5 Provides Data to Customers
5.1 Requests System Data



5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

9.1
9.2
9.3
9.4

10

10.1
10.2
10.3
10.4

11

11.1
11.2
11.3

Views System Results

Configures System
Controls Data Acquisition
Configures Station Usage

Defines Processing Sequence
Configures Data Acquisition
Configures Processing Components
Views System Configuration History
Configures Analysis Interfaces
Configures System Permissions

Monitors Performance

Analyzes Mission Performance
Monitors System Performance
Monitors Station State-of-Health
System Monitors Mission Performance
Monitors Mission Processing

Supports Operations
Accesses the System

Controls the System

Exports Data

Imports Data

Views Event History

Maintains Operations Log
Provides Analyst Feedback
Views Analyst Feedback

Views Analyst Performance Metrics
Views Security Status

Views Messages

Tests System

Performs Software Component Testing
Creates Test Data Set

Replays Test Data Set

Replays Analyst Actions

Maintains System
Performs System Backups
Performs System Restores
Installs Software Update
System Monitors Security

Performs Research

Analyzes Research Events

Develops New Algorithms and Models

Determines Optimal Processing Component Configuration



114

12

121
12.2

13

13.1
13.2

14

14.1
14.3
14.4
14.5

Performs Multiple Event Location

Performs Training

Configures Data for Training Subsystem
Trains Analysts

Operates Standalone Subsystem

Conducts Site Survey
Performs Standalone Analysis

IDC Unique

Assesses Event Consistency
System Screens Event

System Controls Stations

Performs Expert Technical Analysis



IDC Use Case Realization Report
UCR-02 System Detects Event

Use Case Description

This use case describes how the System pipeline processes the raw seismic, hydroacoustic, and
infrasound waveform data from a time interval to form event hypotheses. The System first
checks the quality of arriving waveform data and creates data quality control masks for
waveform sections containing data that is unsuitable for processing (see ‘System Determines
Waveform Data Quality’ UC). The System then processes waveforms to enhance signal content
while reducing noise (see ‘System Enhances Signals’ UC).

The System detects signals (see ‘System Detects Signals’ UC), measures features on the signal
detections (see ‘System Measures Signal Features’ UC), and then uses the signal detections and
feature measurements to build both single station and network event hypotheses (see ‘System
Builds Events using Signal Detections’ UC). The System uses channel based waveform
correlation techniques to form single-station or network event hypotheses (see ‘System Detects
Events using Waveform Correlation’ UC). The System measures signal features for the event
hypotheses on waveform channels across the network (see ‘System Measures Signal Features’
UC). The System predicts signal detections and their features for events (see 'System Predicts
Signal Features' UC). The System uses similarity parameters to search for historic events similar
to the new event hypothesis (see 'System Finds Similar Events' UC).

After forming event hypotheses, the System resolves conflicting event hypotheses (see ‘System
Resolves Event Conflicts’ UC) and then refines each event hypothesis’ location (see ‘System

Refines Event Location’ UC) and magnitude (see ‘System Refines Event Magnitude’ UC). The
System evaluates the moment tensor for an event (see 'System Evaluates Moment Tensor' UC).

The System pipeline follows a sequence configured by the System Maintainer when pipeline
processing raw waveform data to form event hypotheses (see ‘Configures Processing Sequence’
uo).

Architecture Description

The Processing Sequence Control mechanism is responsible for executing processing sequences
previously defined by the System Maintainer (see 'Defines Processing Sequence' UCR).
Processing Sequence classes contain Processing Steps and Flows. These objects form a graph
with Data References travelling on Flows between Processing Steps. Processing Sequence
Control executes a Processing Sequence whenever a Triggering Condition initiating the
Processing Sequence is satisfied. Several types of Processing Step exist in the System. A
Processing Component Invocation Step invokes a control class to perform processing. Control
classes invoked in this manner all realize a common interface named Processing Control IF
which allows the Processing Sequence Control mechanism to invoke them. Control Flow Steps
define loops around one or more Processing Steps, branches to select which of several
Processing Steps to execute, and Processing Steps that Processing Sequence Control can execute
in parallel. A Processing Sequence Invocation Step invokes one Processing Sequence as part of



another Processing Sequence.

The Processing Control IF realizations may store data in the OSD, causing OSD callbacks to
Processing Sequence Control. Processing Sequence Control places data references to the
received data on Flows, making the data available to subsequence Processing Steps.

Processing Sequence Control uses Interval Creation Utility to create Intervals to track automatic
and interactive processing workflow. Processing Sequence Control sets the Interval Status for
automatic Processing Stage Intervals and Processing Sequence Intervals and publishes the status
updates to the OSD. The Analyst views this status in ‘Selects Data for Analysis’ UCR and the
System User views it in ‘Monitors Mission Processing” UCR.

10



Use Case Diagram

System Clock
) Performs S‘ﬁndalone Analysis
\
singludes
< AT o ainchden' -~ System Predicts Signal Features
System Determines Waveform Data Quality =~~~ i 4
5 g sincludes --._ |e- 5
Eric - sincudes )
"""""""""" wincudes . _ —
— = B s o L i3 System Finds Similar Events
System Enhances Signals T .- System Detects Event -. snguoes
g -« ~gihcludes T ’ 1 L e
- - o i s -.-_>_.
s % ; ' % angludes (
sitcludes ! | ., s -
System Detects Events using Waveform .-~ . singluden aificiudes " System Evaluates Moment Tensor
Cormelation L sintludes ) % o,
= F . ) «ingludes LT
System Detects Signals = 14 '\ System Refines Event Magnitude
== i
— System Builds Events using ' -
System Measures Signal Signal Detections ] System Refines Event Location
Features

System Resolves Event
Conflicts

Class Diagrams

Classes - Processing Sequence Control

| amechanisms [
1 E Processing Sequence Control
zinterfaces L5 |

[Z] Processing Control IF ‘“"--"""w‘use” [ WromMedianismlayed | R 1

=utility=
] system Clock
{from Mechanism Layer)

(from Process Control Control)

-

Ty 1

. senumerations
. ~ Invocation Completion Status
“m;ih%r;‘sm” - (from Process Control Elements)
(from Mechanism Layer) \ b =15 Fcess
1 *: by = Failure
4 kY .
£ / -
=configurations f.f' «entitys
] Processing Configuration ] interval Creation Parameters
{from System Configuration Elements) * o | (from Process Control Elements] |
______ s e .\... L bt i v i o
: ez 3y

zentitys
g Processing Sequence
{from Process Control Elements)

zentitys
Q Automatic Processing Rule
(from Process Control Elements)

=entitys
Q Processing Step
{from Process Control Elements)

This diagram shows the Processing Sequence Control class and related classes. Processing
Sequence Control periodically evaluates Automatic Processing Rules to initiate new Processing
Sequences, executes the Processing Steps within a Processing Sequence, and monitors
processing performed by realizations of the Processing Control IF interface.

11



Classes - Processing Configuration

sconfigurations
E Processing Configuration
ffrom System Configuration Elements)

i e
[ W
xentitys I xentitys I
g Workflow Processing Stage E Processing Sequence
{from Process Control Elements) {from Process Control Elements)

This diagram shows the Processing Configuration class which the System Maintainer
preconfigures (see ‘Defines Processing Sequence’ UCR) with the System’s Workflow
Processing Stages, Processing Sequences, and Interval creation configuration. Processing
Sequence Control loads the Processing Configuration on startup (see “Alternate Flow —
Processing Sequence Control - Startup”).

Classes - Processing Sequence

=entity=
E Processing Sequence
{from Process Control Elements)

=

1)

=entitys _incoming.| =gntitys
. Q Processing Step outgoing.. | Q Flow
= (from Process Control Elements) = ifrom Process Control Elements)

=entitys

] Data Reference
(from Process Control Elements)

Q Control Flow Step Q Processing Component Invocation Step

=entitys =2ntity=
(from Process Control Elements) {from Process Control Elements)

=entity=
Q Processing Sequence Invocation Step |
{from Process Control Elements) |

1

=enumerations =entitys
[E] Control Flow Step Type E Processing Context
(from Process Control Elements) { ({from Process Centrol Elements)
= Sequential
= Paraliel
= Conditional
= Loop

This diagram shows the structure of a Processing Sequence. A Processing Sequence consists of
a graph of Processing Steps ordered based on their incoming and outgoing Flows. The System
Maintainer configures Processing Sequences (see “Defines Processing Sequence” UCR) and the
Processing Sequence Control mechanism is responsible for executing the steps of the graph in

12



the proper order. Each step in the graph invokes a Processing Component, invokes another
Processing Sequence or acts as a Control Flow Step. Control Flow Steps are the only steps that
contain child steps. The child steps represent operands for the control flow. The number of
children varies according the type of control flow. For example, a "Conditional" control flow
step might always have two children: one for the "true" branch and one for the "false" branch.
On the other hand, a "Sequential" or "Parallel" control flow step could have a variable number of

children.

Classes - Automatic Processing Rule

zenumeration= wentitys

[¥] Processing Stage Type 1 [=] Processing Stage
{from Process Control Elements) |- ———=""3 (from Process Control Elements)
= Woerkflow Automatic = stage name

= Workflow Interactive
= Mon-Workflow

zentitys zentitys

] Automatic Processing Rule | —— = ] Processing Sequence
{from Process Control Elements) 1 {from Process Control Elements)
zentitys

£ Tiggering Condition
{from Process Control Elements)

aentitys aentitys =entitys

Q Analyst Action Q Data Condition Q Time Condition
(from Process Control Elements) (from Process Control Elements) {from Process Control Elements)
|'_|rlEI action name == data type |g~|Zi frequency

=] data amount

This class shows the structure of an Automatic Processing Rule. An Automatic Processing Rule
combines one or more Triggering Conditions with the Processing Sequence executed by the
Processing Sequence Control when the System’s state satisfies those conditions. Several types
of Triggering Conditions exist in the System, including Analyst Action conditions satisfied when
the Analyst takes some action, Data Conditions satisfied when certain types or amounts of data
are acquired or created on the System, and Time Conditions satisfied when a certain amount of
time has elapsed since the conditions was previously satisfied. The System Maintainer can
configure Automatic Processing Rules for each Processing Stage (see “Defines Processing
Sequence” UCR).

13



Classes - Interval

aentitys
Interval
(from Process Control Elements)

‘ Eg timeframe | =
=enumerations > [Eganalyst comments [ == fentilys
[E] Interval Status 1 —— = — Processing Stage

e [Egwho completed E
_,_F!Etjme completed | ifrom Process Control Elements)

| {from Process Control Elements) & =
= Not Started 7 Y | g stage name
= in Progress v RSOy, __17
= Complete \ ’

1

=1 Not Complete

«enumerations
[€] Processing Stage Type
| (from Process Control Elements)
| = workflow Automatic
= Workflow Interactive ‘
| = Non-Workflow

=entitys
Q Processing Stage Interval
| (from Process Control Elements) |

=entitys =entitys
= Processing Sequence Interval |2 Processing Activity Interval
{from Process Control Elements) _— (from Process Control Elements)
* S time started

£ time started
Eéladi\'e analysts

= processing step statuses |

1

Tracks interactive processing.
See "Selects Data for Analysis’
UCR for details.

aentitys
|=] Processing Sequence
(from Process Control Elements) |

This diagram shows the Interval class and related classes. Processing Sequence Control uses the
Interval Creation Utility and Interval Creation Parameters to create Intervals at the correct times
(see “Alternate Flow — Processing Sequence Control — Create Intervals”). While executing
Processing Sequences, the Processing Sequence Control sets the "processing step statuses" in the
Processing Sequence Interval class as well as the Interval Status for Processing Sequence
Intervals and Processing Stage Intervals.

14



Classes - Processing Control IF

=mechanisms
Q Processing Sequence Control -
(from Mechanism Layer) =enumeration=

[E] Invocation Completion Status

=entitys
Q Processing Context

| (from Process Control Elements) | (from Process Control Elements)

i = Success

= Failure

=Uses -7
«interfaces
[=] Processing Control IF
urgasi_ze» --[ (from Process Control Control] |<J..__ i
=controls [ LY N R L reglizes” - =controls

Q Waveform Comelation Event Detector Control Q Waveform Data Quality Control

({from Waveform Correlation Control) i _u_rea.‘iizen e --;éa‘ize» ({from Data Quality Control)
srealize 3
=controls o o ' i . =controls
Q Signal Enhancement Control |-~ st i e ' . arealizes Q Event Conflict Resolution Control
| (from Signal Enhancement Control) -* RI’E.t_Be‘.Z.EN' H s {from Event Conflict Resolution Control) |
= «realizes -
zcontrols §réaé'!ze» ureeli'ze_x. xcontrols
Q Signal Detection Feature Measurement Control i ' Q Event Location Control
P |
(from Signal Feature Measurement Control) Srealics | (from Event Location Control) |
=controls | o N «controls
=] signal Detection Association Control Vi ¥ ' : ‘| & Event Magnitude Control
| (from Signal Detection Association Control) |- | (from Event Magnitude Control} |
- ! =controls
E ucontro_:» ! Q Event Analyzer
£ signal Detection Control (from Process Control Control)
{from Signal Detection Control) | ' =
«=controls

] Finds Similar Events Control
(from Event Control)
This diagram shows the Processing Control IF interface, a representative set of classes realizing
its interface, and the Processing Control IF dependencies. Each instance of the Processing
Component Invocation Step class (see "Classes - Processing Sequence Control") is configured to
invoke one of the classes realizing the Processing Control IF through its Invoke() method. The
UCRs included by System Detects Event define behaviors for these classes.

Class Descriptions

<<configuration>> Processing Configuration

Consists of workflow processing stages and processing sequences that control the automatic
processing and analyst workflow performed by/on the system. Includes configuration describing
which Intervals (both automatic and interactive processing) the System creates and the
timeframes the System uses to create each new Interval.

<<control>> Event Analyzer

Responsible for analyzing and updating events with information indicating whether further (e.g.
iterative) automated processing should be performed. Instantiations of this class implement
processing sequence control logic that is unavailable in the other classes realizing the Processing
Control IF.

Event Analyzer implementations have the option to update the processing configuration

parameters used by subsequent Processing Steps. This is similar to how human Analysts select
processing parameters for algorithms they invoke, except that Event Analyzer does not directly

15



invoke additional Processing Steps. Instead, Event Analyzer stores information in the OSD and
then relies on callbacks to the Processing Sequence Control mechanism to initiate additional
processing. Event Analyzer does this by creating a copy of a data object (e.g. a new version of
an event hypothesis, etc.), updating the processing configuration parameters on that data object,
and then storing the data object and its associated processing configuration parameters in the
OSD. OSD callbacks may result in Automatic Processing Rules being satisfied, causing the
Processing Sequence Control mechanism to invoke additional Processing Sequences using the
updated processing configuration parameters. The data objects stored in the OSD are also Event
Analyzer’s outputs, so the Processing Sequence Control Mechanism may set data references to
these objects on the outgoing Flows for the Processing Step that invoked Event Analyzer.

<<control>> Event Location Control
Responsible for controlling the event location computation. Retrieves necessary data, invokes
the appropriate Event Locator Plugin to compute the new location, and stores the result.

<<control>> Finds Similar Events Control
Responsible for controlling the search for similar Events.

<<control>> Signal Detection Association Control

Control class responsible for controlling signal detection association calculations. Retrieves
configuration from the OSD, invokes the appropriate Signal Detection Associator Plugin,
computes quality metrics, and stores the new or modified events in the OSD.

<<control>> Signal Detection Control
Responsible for controlling automatic signal detection. Retrieves necessary data, invokes
plugins to detect signals on waveform data and refine signal onset time, and stores the results.

<<control>> Signal Enhancement Control

This Control class is responsible for controlling the signal enhancement computations. It obtains
the data necessary for the execution of a signal enhancement, invokes the appropriate Signal
Enhancement Plugin to perform the enhancement, and stores the results via the OSD mechanism.
Signal Enhancement Control is started and stopped by the System Control mechanism and is
invoked by the Processing Sequence Control mechanism. When invoked, it is passed a
processing context, references to data it needs for its processing, and optionally a set of
processing parameters that override the default parameters. The default processing parameters
are provided as part of Signal Enhancement Control’s static configuration. The primary data
required by the Signal Enhancement Control is a set of Waveforms that needs potential signals
within it enhanced.

<<control>> Waveform Correlation Event Detector Control

Responsible for controlling waveform correlation event detection computations. Retrieves
necessary data, invokes the appropriate Waveform Correlation Event Detector Plugin to detect
new events, and stores the results.

<<control>> Waveform Data Quality Control
Waveform Data Quality Control class is responsible for controlling the waveform data quality

16



computations that create and update Waveform QC Masks. It retrieves the configuration,
parameters, and other data necessary for its execution, invokes the appropriate Waveform Data
Quality Plugin to compute Waveform QC Masks, and stores the masks in the OSD. The System
Control mechanism starts and stops Waveform Data Quality Control. The Processing Sequence
Control mechanism invokes Waveform Data Quality Control when executing preconfigured
Processing Sequences (see ‘System Detects Event’ UCR).

<<entity>> Analyst Action
Special type of Triggering Condition that is based on an action performed by an Analyst. The set
of available actions is predefined by the system.

<<entity>> Automatic Processing Rule
Represents a Processing Sequence and the set of Triggering Conditions for initiating it.

<<entity>> Control Flow Step

A specialized kind of Processing Step that is used to represent control flow between other
Processing Steps. The Control Flow Step is represented by the type of control flow operation
(e.g. Parallel, Conditional, etc.) and operands to which it applies (i.e. other Processing Steps).

<<entity>> Data Condition
Special type of Triggering Condition that is based on the availability of data (e.g. 100 signal
detections, 15% of all waveforms for the interval).

<<entity>> Data Reference
Represents a reference to data that passes between Processing Steps on a Flow.

<<entity>> Flow
Represents control and data flow between two Processing Steps.

<<entity>> Interval

Class for tracking the status of interactive or automatic processing on a specific timeframe of
data. Specialized intervals exist for Processing Stage, Processing Activity, and Processing
Sequence.

<<entity>> Interval Creation Parameters

Represents the parameters used by Interval Creation Utility to create new Intervals. This
includes which Intervals to create at which times. May also define when a certain amount of
data (e.g. acquired waveforms) must exist before the Interval Creation Utility creates a new
Interval.

<<entity>> Processing Component Invocation Step
A specialized kind of Processing Step that represents an invocation of a specific Processing

Component.

<<entity>> Processing Context
Represents the context in which data is being stored and/or processed. This includes the

17



Processing Stage (either automatic or interactive) and Interval performing the processing session
(e.g. processed by Analyst vs. processed by System). For Analyst processing, may identify the
Analyst work session. For System processing, may identify the Processing Sequence and/or
Processing Step being executed (including a way to identify a particular Processing Sequence
and Processing Step among the many possible instantiations), the visibility for the results
(private vs. global), and the lifespan of the data (transient vs. persistent). This information is
needed by the Processing Sequence Control to manage the execution of Processing Sequences,
which may execute in the context of an Analyst refining an Event or in the context of the system
initiating automatic processing. It is also needed by the Object Storage and Distribution (OSD)
mechanism to determine how to store and distribute the data.

<<entity>> Processing Sequence

A user-configurable set of Processing Steps to be executed by the Processing Sequence Control
mechanism. Each Processing Step may invoke a Processing Component or another Processing
Sequence. Special steps are used to specify control flow (e.g. conditional logic, parallelism,
etc.).

<<entity>> Processing Sequence Invocation Step
A specialized kind of Processing Step that represents an invocation of a specific Processing
Sequence.

<<entity>> Processing Stage

Represents a named stage of data processing, which may be part of the System Maintainer-
defined workflow or an Analyst-defined stage outside the workflow. All Processing Results are
associated to a Processing Stage.

<<entity>> Processing Step

Represents a single step within a Processing Sequence. A Processing Step may invoke a
Processing Component or invoke a Processing Sequence, and may optionally specify parameter
overrides for the invoked component/sequence. Special kinds of Processing Steps known as
Control Flow Steps are used to specify control flow between Processing Steps.

<<entity>> Time Condition
Special type of Triggering Condition that is based on time (e.g. every 5 minutes).

<<entity>> Triggering Condition
Represents a condition which must be satisfied in order to trigger a Processing Sequence.

<<entity>> Workflow Processing Stage
Represents a Processing Stage that is part of the System Maintainer-defined Analyst workflow of

automatic processing stages and Analyst review stages.

<<enumeration>> Interval Status
Represents the current status of a Processing Sequence Interval or a Processing Activity Interval.

<<interface>> Processing Control IF

18



Defines the interface implemented by all <<control>> classes in the system that are controlled by
the Processing Sequence Control <<mechanism>>. <<control>> classes realize this common
interface to support configurable processing sequence definition and execution. Processing
Sequence Control uses the Invoke() operation declared in Processing Control IF to call
<<control>> classes while executing processing sequences. When called in this way the
<<control>> classes operate on the provided data (e.g. event hypotheses, signal detections, etc.)
using either default parameters configured by the System Maintainer and loaded by the
<<control>> class on startup or override parameters provided to the Invoke() operation.

<<mechanism>> OSD
Represents the Object Storage and Distribution mechanism for storing and distributing data
objects internally within the system.

<<mechanism>> Processing Sequence Control
Mechanism for executing and controlling processing sequences configured by the System

Maintainer.

<<utility>> System Clock
Represents the mechanism to schedule, reschedule, and cancel callbacks.

19



Sequence Diagrams
Flow Overview

it Flow Overview

- > Expansion Flow - Processing Expansion Flow - Processing Expansion Flow - Processing
Main Flow - System Detects Event
¥ Sequence Control - Evaluate Sequence Control - Execute Sequence Control - Execute
Triggering Conditions Processing Sequence Processing Step
Alternate Flow - Processing
| Seguence Control - Startup
ref ref ref
Alternate Flow - Processing = - Expansion Flow - Processing
xpansion Flow - Processing Sequence
Sequence Contrel Handles OSD L Control - Process Cal%racl? Sequ ence Control - Terminate
Callbacks Processing for Data Reference
Alternate Flow - Processing
Sequence Control - Create Intervals

Main Flow - System Detects Event

7] Main Flow - System Detects Event

‘ E:Sy\stem Clock | | E:Pmcessing Sequence Control

| 1: Evaluate Automatic Processing Rules ()
| |
| ]

[for each Automat cI‘rocessing Rule, ]

1: Evaluate Triggering Conditions { automatic processing rule )
|

pm

[Expansion Flow - Processing Sequence Control - Evaluate Triggering Conditions

This flow shows how Processing Sequence Control periodically evaluates the Automatic
Processing Rules to trigger Processing Sequence execution.

Operation Descriptions

None

20



Expansion Flow - Processing Sequence Control - Evaluate Triggering Conditions

EI Expansion Flow - Processing Sequence Control - Evaluate Triggering Conditions

:Processing rAutomatic E :Processing E ‘Processing | E :Flow ‘
Sequence Processing Sequence Step
Control Rule |

8 1 GJI Triggering Cundi‘ltiml'ls )

| i

|
o |
|
| 1: Evaluate (triggeri‘_\g condition )

o |

|
[for each Triggering Condition,,]

fif all TriggLring Conditions satiJ‘fied] Depending onthe Mromati

1: Get Processing Sequence () Processing Rule the initiator will either
71 be the System or a particular Analyst.
| J IIIIII ~ Includes Processing Stage and Intenval.

ukl.m InitiatorT: ru tomatlc processmd rule ) | |
F | | Uses the current initiator and the Processing

| Sequence’s Processing Context configured
by the System Maintainer to create a
______ "1 Processing Context to use for OSD storage
s s AR | | during the current sequence execution.
T |
4: Set Processing Context { processing sequ ence, processing r_qnierl ] |
| | ; |
I | | Finds data references for the
' ~ sequence’s initial step, potentially
| o+ GetProcessing Steps () __| using the OSD. The data
| | "D references depend on the rule
T
|

triggering the sequence but may
be references to new data
acquired on the system, references
to data modified by an Analyst, etc.

| & Get Initial Process‘ng Step ()

[] |

12 I
| 7: Get Incoming Flovls () J_r/

| i Tﬂ
|
|
|
|
|

8: Lookup Data Refe{'ences {automatic prJJcessing rule ) |
9: Add Data RefFrence { data reference } TIJ
T
|

|111 Execute Processing Sequence {} | The US NDC System prioritizes Processing
t | Sequences working on real-time data over
FI Processing Sequences working on late

__q

10: Prioritize Pmcessihg 0

| e,

| arriving data.

[
1
Expanston Flow - Processing Sequence Control - Exécute Processing Seqtlence|

This flow shows Processing Sequence Control evaluating the Triggering Conditions for an
Automatic Processing Rule. If all of the Triggering Conditions are satisfied then Processing

21



Sequence Control executes the Processing Sequence associated to the Automatic Processing
Rule.

Operation Descriptions

None

Expansion Flow - Processing Sequence Control - Execute Processing Sequence

EIExpansion Flow - Processing Sequence Control - Execute Processing Sequence

Q :Processing Q :Processing Q :Processing E 105D |
Sequence Control Sequence Sequence Interval | |
1]

Set Interval Status

1: Set Intenval Staiu$ {interval status ) -+ 10 “In Progress”
et '

| Tj‘"""’wdl

2: Store Inter!val {intenval, processing qonterl 1 f

|
|
|
|
| 3: Get Processing Steps {|] |
P
I
|
|

T
{l | ’\~
%
i | | |
| |
| Persisent, global
! isibility.
[while there are remaining Processing StLps in the Processing Seguence,, ] | j-"' e
| =
| 1: Set Processing Step StL‘Ius { processing step, status ) Mark the Processifig
| | :‘-l‘—-i IIIIIIIIIIIII _ Step as “In Pregpess”,
Lt /
| 2: Store Intenval (interval, processing context) | _l at
| |._|

| 3: Execute Processing S‘th { processing step )

5 | | !
|

E:p-an sion Flow - Processing Sequence Control - Execute Processing Step

T
1 Depending on execution

|
| A Set Brocessing stop Sliﬂus (processing step, status ) et TESUTES either mark as
L o P “Complete” or as

| _5: Store Intenval { interval, processing context )
I ]

%

|
I
| 6 Get Mext Processing SlLaps { processing sequ enJe ] | -"'\

| \

Y
! /

|

|

: : : |
| 5: Store Interval { interval, processing context ) / ! ...I ’
I !.r —l—r/
' / L
I

“Complete” if the Processing Sequence
executed successfully and "Moot
Complete” if there were any efrors.

| 4 Set Interval Status (interval status ) Persisent, global

visibility.

[

m
| | | | experiencing an error.

This flow shows how Processing Sequence Control executes a processing sequence by iteratively
executing the Processing Steps in the sequence.

22



Operation Descriptions

Operation: OSD::Store Interval()
Store the given interval with the given lifespan (persistent vs. transient) and visibility (private vs.

global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: OSD::Store Interval()
Store the given interval with the given lifespan (persistent vs. transient) and visibility (private vs.

global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: OSD::Store Interval()
Store the given interval with the given lifespan (persistent vs. transient) and visibility (private vs.

global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: OSD::Store Interval()
Store the given interval with the given lifespan (persistent vs. transient) and visibility (private vs.

global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

23



Expansion Flow - Processing Sequence Control - Execute Processing Step

'] Expansion Flow - Processing Sequence Control - Execute Processing Step

Q iProcessing Q iProcessing iProcessing iProcessing Q iControl iProcessing E iFlow
Sequence Control Step Component B sequence Flow Step = Control IF .
i : Invacation Step Invocation Step -
[if executing a|Processing Component Invacation Step]
1: Get Processing Component ()

2 Select Processing Control IF Realization {) | " Lockup and bind to an instance of 2
— ! class realizing Processing Control IF.

it
| 3 Get Incoming Flows [}
ot ],

* Each Invoke is paired with a Set Invocation
This step invokes classes realizing the ) Comgletion Status. Since these calls are

| 4 Get Data References|( flows ) I Processing Control IF interface. Since each asynchronous, the Set invocation
L | UCR grouped under "System Detects Event’ Completion Status calls may occur in a
| has a class realizing Processing Control IF, | different order than the paired Invoke calls.

T & Get Processing Contést {) those UCRs are invoked by this call.
=

5] | | e, A call to Invoke times out when its Set
& Invoke { processing contéxt, data references, pafameter overrides ) Py } Invocation Completion Status message is
f not received by Processing Sequence
Control within a configured amount of time.
| When a timeout occurs or the Invocation
Completion Status indicates a failure
occured in a8 Processing Step, Processing
Sequence Control either retries the Invoke
call or raises a failure for the Processing
Step.

7: Set Invocation Completion Status [ processing context ) >

[if executing a Processing Sequence :n'.:ccation Step)]

1: Get Processing Sequence ()

2: Execute Processing Sequence ()

Expansion Flow - Pracessing Sequenck Control - Execute Processing Sequence]

[if executing & Control Flow Step]

1: Evaluate Control Flow Step ()

2: Get Operand Processing Steps ()

: Execute the appropriate Control Flow Step (or
1} steps) based on the Control Flow Step's
evaluation.

3: Execute Processing Step {processing step )

re—

Expansion Flow - Processing Sequence Control - Execute Processing Step

Results may come from QSD callbacks

1l oakup Brocessing Resuft- L} (see ‘Alternate Flow - Processing

— Sequence Control Handles OSD
1 Callbacks’) or evaluating conditional T e T
2: Create Data References ( processing results expressions. ased on the Processing Context, the
L (o g ! b invoked Processing Control IF realization will
store data in the OSD with a particular

lifespan and wisigility. Adding Data
References te Flows provides data to
subsequent Processing Steps.

A

3: Get Qutgoing Flows,[)
—_

4: Add Data Reference { data reference ) \

This flow shows how Processing Sequence Control executes a Processing Step. Processing
Sequence Control executes a Processing Component Invocation Step by binding to the
appropriate realization of the Processing Control IF interface, getting the Data References for the
Processing Step, and invoking the Processing Control IF with the Data References. Processing
Sequence Control monitors Invocation Completion Status to determine when the Processing
Control IF invocation completes. Processing Sequence Control executes a Processing Sequence
Invocation Step by initiating execution of that sequence. Processing Sequence Control executes
a Control Flow Step by evaluating the Control Flow Step’s conditions to determine which of the
operand Processing Steps need to be executed and then executing those Processing Steps.
Regardless of Processing Step type, after Processing Sequence Control executes the Processing
Step it sets Data References to the Processing Step’s results on the step’s outgoing Flows.

24



Operation Descriptions

None

Alternate Flow - Processing Sequence Control - Startup

|i| Altemate Flow - Processing Sequence Control - Startup

Q 1System Control Q :Processing Q 105D Q 1System
L 2 Sequence Control L = Clock

1: Start ()

y

2: Get Processing Control Parameters ()

interval Creation Parameters,

3: Get Automatic Processing Rléles {)

4: Get Processing Sequences ( ]
I -

e e | Processing Sequences do not
"""""" ["7 change after they are loaded by

o . | Processing Sequence Control.
|5 Initialize Processing Sequences and Rules ()

&; Subscribe for Waveforms Q’fmefmme )
i L

[F:|Subscribe for Signal Detectiu-g; { Timeframe )

These timeframes start at the
current time and have no end

8: Subscribe for Events { Timeframe | time {i.e. Processing Sequence
I - Control always receives

callbacks when it is running).

9: Subscribe for Event H)rpotwa_ses { Timeframe )

10: Subscribe for Intervals { Timeframe )

L Schedule callbacks to evaluate
| Automatic Processing Rules and to
create new Interval objects.

11: Schedule Callback () /

The flow shows how System Control starts Processing Sequence Control. Processing Sequence
Control loads each Processing Sequence and subscribes for data updates from the OSD.
Processing Sequence Control subscribes for updates to either provide data to Processing
Sequences (see 'Alternate Flow - Processing Sequence Control Handles OSD Callbacks' or to
remove data from Processing Sequences (see 'Alternate Flow - Processing Sequence Control
Terminates Processing for Data Reference'). Processing Sequence Control schedules regular
callbacks from the System Clock. The first set of callbacks trigger Processing Sequence Control
to evaluate Automatic Processing Rules to determine which Processing Sequences to execute
(see “Main Flow”). The second set of callbacks trigger Processing Sequence Control to create
new Interval objects (see “Alternate Flow — Processing Sequence Control — Create Intervals”).

25



Operation Descriptions

Operation: OSD::Subscribe for Signal Detections()

Subscribe for updates regarding Signal Detection creations, modifications, and associations
occurring within the specified timeframe. This includes updates for new or modified
unassociated Signal Detections.

Operation: OSD::Subscribe for Waveforms()

Subscribe for updates regarding raw and derived waveforms occurring within a specified
timeframe. This includes information about what waveforms have been acquired by the System
as well as what derived waveforms have been formed, but does not include the actual waveform
data.

Operation: OSD::Subscribe for Events()
Subscribe for changes to Event objects within the given timeframe. Callbacks are invoked on
subscribers any time an Event within the timeframe is added or modified.

Operation: Processing Sequence Control::Initialize Processing Sequences and Rules()
Initializes the Automatic Processing Rules and the associated Processing Sequences so that
Processing Sequence Control can evaluate the rules and initiate the sequences when the System
state satisfies those rules.

Operation: OSD::Subscribe for Intervals()

Subscribe for changes to Interval objects that overlap with the given timeframe. Interval objects
track the active analysts and completion status of intervals corresponding to processing stages
and processing activities within processing stages. Callbacks are invoked on subscribers any
time the set of active analysts or completion status for an Interval changes.

26



Alternate Flow - Processing Sequence Control Handles OSD Callbacks

E Alternate Flow - Processing Sequence Control Handles OSD Callbacks

i Q.:OSD ' |E:ProcessingSequenceCuntrol |

1; Waveform Callback {pmcessiﬁg context )
o

[ 1 ; 2: Determine Waveform Change ()
L]

t?f??’l?i?ﬂ.f low - Processing Sequence Control - Process Callback|

3y Signal Detection Callback ( processing context )
1 [
| =

|t 4: Determine Signal Detection Change ()
I'T__l

Ref: Expansion Flow - Processing Sequence Control - Process Callback
1
| )

5 Event Hypothesis Callback { processing context |
] | =
L i |

|T__| 6: Determine Event Hypothesis Change ()

Ref: Expansion Flow - Processing Sequence Control - Process Callback
11

74 Events Callback { processing c:unte:tt ]

&: Determine Event Change ()

Ref: Expansion Flow - Processing Sequence Control - Process Callback
L

| 9 Intenval Callback { processing context )

L
| 1 i 10: Determine Interval Change ()
I
Ref: Expansion Flow - Processing Sequence Conirol - Process Callback

This flow shows how Processing Sequence Control processes OSD callbacks. OSD callbacks
occur when data is stored in the OSD with any lifespan and visibility settings. In addition to
supporting pipeline processing, this allows the initiation and running of Processing Sequences as
a result of Analyst interactions with data that the Analyst has not selected to store permanently
and/or make globally visible.

27



Operation Descriptions

None

Expansion Flow - Processing Sequence Control - Process Callback

E] Expansion Flow - Processing Sequence Control - Process Callback

Q :Processing Q :Processing Q :Processing Q :0SD
Sequence Control Context Stage Interval - |
1: Get Initiator ()

of chahge indicates Analyst is reviewing data]

[T 1: Record Data Review () |

N,

* Data being reviewed by Analysts is

| determined using the Interval and
4— 2 Get Data Reference {reserved data) Event Analysis Status callbacks. In

| | | the future, it may also be determined

L 5 = | by other callbacks (see open issues).
..__| 3: Terminate Processing ( data reference ) |

L n e - Fovem | | e.g. if the data is being reviewed
Expansion Flow - Processing Sequence Control - Terminate Processing for Data Reference| then only the Analyst performing the
| | review is allowed to process the data.

4: Set Interval Status { interval status )

»l
5: Store Intenval { interval, processing context ) ot
>
™
5
L L
- i e
[Else if change indicates Analyst is no longer reviewing data] d x.'\.\
%,
— - | ! i
£ 1: Unrecord Data Review () | o Persistent, global visibility.
| i
; 4
2: Set Interval Status ( interval status ) ! f
L /
A 3: Store Interval { interval, processing context ) T -/
LB

Processing Sequence Control may determine the data
[If the initiator is allowed to process the data] _ch_a_nge satisfies an Automatic Process_lng Rule and
| initiate a Processing Sequence execution (see
“Expansion Flow - Processing Sequence Control -
Evaluate Triggering Conditions”). Processing Sequence

1: Record Data Change [ initiator, data change ) Control may also determine the data change represents
¢ | I 1 results from invoking a Processing Step and use the
T *_—I .................................. e data change to set Data References on Flows (see
--------------- “Expansion Flow - Processing Sequence Control -

Execute Processing Step”).

This flow shows how Processing Sequence Control processes data changes from OSD callbacks.
Processing Sequence Control monitors data changes to determine which Processing Sequences
are allowed to process which types of (e.g. Processing Sequences for System processing can only
use data that is not open for Analyst review). Processing Sequence Control records data changes
and uses those changes to initiate Processing Sequence execution (see “Expansion Flow —
Processing Sequence Control — Evaluate Triggering Conditions”) and to pass data between the
Processing Steps in a Processing Sequence (see “Expansion Flow — Processing Sequence Control

— Execute Processing Step”).

28



Processing Sequence Control sets the automatic Processing Stage Interval’s status based on OSD
callbacks. If a callback indicates an Analyst has selected to review the data in an interactive
Processing Stage and automatic processing for the stage is complete then the Interval is set to
“Complete” (which occurs when all of the associated Processing Sequence Intervals are also
“Complete”) or “Not Complete” (when one or more of the associated Processing Sequence
Intervals are not “Complete”). If a callback indicate an Analyst has completed review for an
Interactive Processing Stage and a new automatic Processing Stage is initiated then the
Processing Stage Interval is set to “In Progress”.

Operation Descriptions

Operation: OSD::Store Interval()
Store the given interval with the given lifespan (persistent vs. transient) and visibility (private vs.

global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: OSD::Store Interval()
Store the given interval with the given lifespan (persistent vs. transient) and visibility (private vs.

global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

29



Expansion Flow - Processing Sequence Control - Terminate Processing for Data Reference

E| Expansion Flow - Processing Sequence Control - Terminate Processing for Data Reference

‘Processing Q :Flow
Sequence -
Control

[for all Flows,,]

1: et Data References [ )
.

[if Flow contains the Data Reference]

| 1: Remove Data Reference from Flow ()
-

This flow shows how Processing Sequence Control terminates processing for data that has been
opened for Analyst review (e.g. the Analyst reserved an event for analysis (see “Refines Event”
UCR), the Analyst opened a time interval to scan waveforms and unassociated signal detections
(see “Scans Waveforms and Unassociated Detections” UCR) by removing all Data References to
the opened data. This flow is invoked when Processing Sequence Control receives a callback
from the OSD indicating the event or time interval is open for Analyst review (see “Alternate
Flow - Processing Sequence Control Handles OSD Callbacks”). This flow does not terminate or
interrupt any Processing Steps that are processing the data when this flow is invoked. Those
Processing Steps continue processing, and Processing Sequence Control removes the data from
further processing when the Processing Steps complete their processing. The results of running
these Processing Steps have no effect on the data opened for analysis.

Operation Descriptions

None

30



Alternate Flow — Processing Sequence Control — Create Intervals

'] Alternate Flow - Processing Sequence Control - Create Intervals

=] :system Clock | :Processing | tInterval Creation Hsinterval | :0sD
. Sequence Control Utility . .

il: Create Intenvals ()
=
| 2: Create Intervals () )

3: Create { interval greation parameters, current time )

4: Set Data Timefrarne ()

Persistent, global visibility.

5: Store Intenval { in-terval, processing mntg&"i-]
1  mrd

Operation Descriptions

Operation: OSD::Store Interval()
Store the given interval with the given lifespan (persistent vs. transient) and visibility (private vs.

global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

State Machine Diagrams

None

SSD Mappings

General:

S-1296: [ Threshold] The System shall store the processing time period(s) during which each
Waveform QC Mask was applied to the underlying waveform data.

S-1297: [Threshold] The System shall store the Waveform QC Masks applied to the waveform
data used for each waveform processing operation.

S-1298: [ Threshold] The System shall store the channel masked by each Waveform QC Mask.

S-1299: [Threshold] The System shall store the identity of the user or processing stage creating

31



each Waveform QC Mask.

S-1300: [Threshold] The System shall store the identity of the user or processing stage
modifying each Waveform QC Mask.

S-1301: [Threshold] The System shall store the identity of the user or processing stage removing
each Waveform QC Mask.

S-1302: [ Threshold] The System shall store the time of each Waveform QC Mask creation.
S-1303: [ Threshold] The System shall store the time of each Waveform QC Mask removal.
S-1304: [ Threshold] The System shall store the time of each Waveform QC Mask modification.

S-1305: [Threshold] The System shall store the type of error being masked for each
automatically created Waveform QC Mask.

S-1386: [ Threshold] The System shall store the beam definition parameters for all beams.

S-1387: [Threshold] The System shall store continuous beams for virtual event hypotheses for
predefined locations.

S-1393: [ Threshold] The System shall store all derived channels related to one or more signal
detections.

S-1394: [ Threshold] The System shall store derived waveform data with no related signal
detections for the Operational Processing Time Period.

S-1405: [ Threshold] The System shall create an origin beam steered to an event hypothesis’
hypocenter and a seismic array station’s predicted first P arrival time whenever a seismic array
station lacks a first P signal detection association.

S-1421: [Threshold] The System shall store all signal detections.

S-1438: [ Threshold] The System shall store time domain measurements.

S-1450: [ Threshold] The System shall store polarization feature measurements.

S-1465: [ Threshold] The System shall store frequency domain waveform measurements.

S-1486: [ Threshold] The System shall store fk spectra measurements.

S-1549: [Threshold] The System shall perform late network signal association during the
operational processing time period.

S-1556: [Threshold] The System shall store all event hypotheses formed by the System.

32



S-1557: [Threshold] The System shall store all signal detection associations for each event
hypothesis stored by the System.

S-1576: [ Threshold] The System shall store the station quality metrics for all stations for each
event hypothesis.

S-1580: [Threshold] The System shall recompute the event hypothesis quality metric for an
event hypothesis when any of the event hypothesis quality statistics used to calculate the event
hypothesis quality metric are updated.

S-1588: [Threshold] The System shall store the event quality metric for each event hypothesis.
S-1599: [Threshold] The System shall compute a new event hypothesis relocation when an
automatic process modifies any event hypothesis relocation parameter contributing to that event
hypothesis' location.

S-1618: [ Threshold] The System shall store up to 300 unique event hypotheses for each event.

S-1619: [Threshold] The System shall store the confidence level of each computed event
hypothesis location uncertainty bound.

S-1620: [ Threshold] The System shall store the type (i.e., confidence, coverage, or k-weighted
with the associated weights) of each location uncertainty bound.

S-1621: [Threshold] The System shall store modeling uncertainties for model based predictions
of signal detection measurements.

S-1622: [ Threshold] The System shall store uncertainties for observed signal detection
measurements.

S-1623: [Threshold] The System shall store the sum squared weighted residual for each event
hypothesis location.

S-1624: [Threshold] The System shall store the defining/non-defining state for each signal
detection measurement associated to a stored event hypothesis.

S-1625: [Threshold] The System shall store a preferred event hypothesis for each event for each
processing stage.

S-1626: [ Threshold] The System shall store the processing stage during which each event
hypothesis location was created.

S-1627: [Threshold] The System shall store the processing stage during which an event
hypothesis is modified.

33



S-1628: [Threshold] The System shall store the processing stage that rejected an event.

S-1663: [ Threshold] The System shall store uncertainties for all event hypothesis magnitude
estimates.

S-1664: [ Threshold] The System shall store each single station magnitude estimate for each
event hypothesis.

S-1665: [ Threshold] The System shall store each network magnitude estimate for each event
hypothesis.

S-1666: [ Threshold] The System shall store the defining/non-defining state for each station
magnitude associated to a stored event hypothesis.

S-1816: [ Threshold] The System shall store the earth model and version used to compute an
earth model prediction.

S-1817: [Threshold] The System shall store the corrections applied to earth model predictions.

S-1818: [ Threshold] The System shall store the correction surface used to correct an earth model
prediction.

S-1819: [Threshold] The System shall store the predicted slowness computed from a basemodel.

S-1820: [Threshold] The System shall store the uncertainties of a predicted slowness computed
using a basemodel.

S-1821: [Threshold] The System shall store the predicted azimuths computed using a phase-
specific basemodel.

S-1822: [Threshold] The System shall store the uncertainties of predicted azimuths computed
using a basemodel.

S-1823: [Threshold] The System shall store the predicted travel-times computed from a
basemodel.

S-1824: [Threshold] The System shall store the uncertainties of predicted travel-times computed
using a basemodel.

S-1842: [Threshold] The System shall store predicted amplitude attenuation.
S-1843: [Threshold] The System shall store predicted amplitude attenuation uncertainties.

S-1860: [ Threshold] The System shall process waveform data within a configurable processing
time interval when a configurable percentage of data is available.

34



S-1861: [Threshold] The System shall process all available alphanumeric data within a
configurable processing time interval.

S-1862: [Threshold] The System shall run a previously configured group of operations whenever
the triggering event for that group of operations occurs.

S-1872: [Threshold] The System shall provide the Analyst the capability to interrupt automated
event hypothesis processing to analyze data if configured.

S-1967: [Threshold] The System shall store results from all stages of data processing.

S-2042: [Threshold] The System shall store automatic and interactive processing parameters in
the database.

S-2043: [Threshold] The System shall store automatic and interactive processing results.

S-2044: [Threshold] The System shall store the relation of processing results to processing
parameters in the database.

S-2166: [ Threshold] The System shall automatically process late-arriving waveform data within
one (1) minute of receipt by the Data Processing Partition.

S-2171: [Threshold] The System shall prioritize the processing of real time data over the
processing of late arriving data.

S-2172: [Threshold] The System shall automatically initiate data processing within 5 minutes of
data acquisition on the Data Processing Partition.

S-2173: [Threshold] The System shall automatically execute processing of waveform data (i.e.,
data acquisition, data processing, and data storage).

S-2175: [Threshold] The System shall process up to 2000 seismic event hypotheses per day
without disruption of the Data Processing Partition.

S-2177: [ Threshold] The System shall produce an automated event bulletin in near real-time
during normal conditions without disrupting operations.

S-2178: [ Threshold] The System shall produce an automated event bulletin in near real-time
during swarm conditions without disrupting operations.

S-2223: [Threshold] The System shall store all data and derived processing results to persistent
storage as soon as the data and/or derived processing results are available.

S-2417: [Threshold] The System shall store hydroacoustic signal detection groups

S-5610: [ Threshold] The Data Processing Partition shall access and process all waveform data

35



stored on the system.

S-5715: [Threshold] The System shall store wind velocity (including uncertainty) computed
from meteorological models.

S-5716: [Threshold] The System shall store temperature (including uncertainty) computed from
meteorological models.

S-5717: [ Extensibility] The System shall store gravity wave corrections to temperature
predictions.

S-5720: [Threshold] The System shall store spectrograms.

S-5722: [Threshold] The System shall store power spectral density.
S-6469: [ Threshold] The System shall store detection feature maps.
S-6521: [ Threshold] The System shall store seed events.

S-6522: [Threshold] The System shall store seed event quality.

IDC Specific:

S-5795: [Threshold] The System shall compute Event Consistency checks when an event
hypothesis is saved.

Notes

General:
1. UCR ‘Monitors System Performance’ describes how system processes are monitored.

2. The Event Analyzer control class appears in this UCR as a control class that can be used to
implement processing sequence control logic that is both too specific for the Processing
Sequence Control mechanism to implement and which is not available in other control classes.
Since the details of this additional logic do not appear in any UC, the analysis model will not
further describe Event Analyzer.

IDC Specific:
1. Event Screening Control also realizes Processing Control IF, but is not shown in the
Processing Control IF Class Diagram.

2. The System Maintainer uses Defines Processing Sequence Display (see ‘Defines Processing

Sequence’ UCR) to configure a processing sequence to perform event consistency calculations
after an event is saved (see ‘System Accesses Event Consistency’ UCR).

36



3. A Control class or Plugin class may request an auxiliary seismic Waveform by querying the
OSD for the Waveform. If the Waveform is not found, the OSD uses Station Data Receiver
Control to request the waveform segment from the Station (see ‘System Receives Station Data’
UCR).

37



This page intentionally left blank.

38



IDC Use Case Realization Report
UCR-02.08 System Refines Event Location

Use Case Description

This use case describes how the System refines event hypothesis location solutions using single
event or multiple event algorithms. Event locations can be absolute or relative. The System
locates events by finding the event location minimizing the difference between signal detection
feature measurements and signal detection feature predictions (see 'System Measures Signal
Features' UC). The System references both empirical knowledge from past events and
geophysical models to form the signal detection feature predictions (see 'System Predicts Signal
Features' UC). The System also computes an uncertainty bound for each event hypothesis
location solution describing a region bounding the event hypothesis' hypocenter and origin time
at a particular confidence level. The System creates a variety of location solutions for each event
hypothesis. These location solutions vary from one another in either the input parameters the
System uses or in the location solution components the System restrains to fixed values (e.g.,
depth) during event location calculations. The System computes location solutions using input
parameters configured by the System Maintainer (see ‘Configures Processing Components’ UC).
The Analyst has the option to override input parameters originally configured by the System
Maintainer (see 'Refines Event Location' UC).

Architecture Description

The Event Location Control class is responsible for controlling event location computations.
Event Location Control may be invoked by Processing Sequence Control as part of executing a
step in a Processing Sequence (see 'System Detects Event' UCR), manually invoked by an
Analyst as part of refining an event (see 'Refines Event Location' UCR), or manually invoked by
a Researcher (see 'Performs Multiple Event Location' UCR). Following the plugin and
parameter pattern described in the Architecture Document, Event Location Control uses an Event
Locator Plugin to perform the event location calculations. Each of the Event Locator Plugin
implementations in the System realize a common plugin interface. The specific Event Locator
Plugin used varies dynamically at runtime based on the Event Location Parameters. When
invoked from Processing Sequence Control, Event Location Control builds up the Event
Location Plugin Parameters to be passed to the Event Locator Plugin, selects and invokes the
appropriate Event Locator Plugin based on those parameters, updates the Event Hypotheses with
the results, and stores the Event Hypotheses via the OSD mechanism.

39



Use Case Diagram

| System Réﬁ_ulves Event

Conflicts
System Builds Events ' : =
using Signal Detections REﬁnes»Ew;t Location
System Detects Evenjr‘ «inéiude» PerFu_l]'nﬂ\'lultiple Event Location
B singludes i ; o

_ 4 sincludes

- includes ' .

3 =imfludes

System R:Eﬁnes_Event Location

40



Class Diagrams

Classes - Event Location Control

amechanism»
Q Processing Sequence Control

(from Mechanism Layer)

ausen

amechanisms
E System Control

({from Mechanism Layer)

alisen

Processing Control IF

ainterfaces
{from Process Contrel Control)

«interfaces
Application Control IF
{frem Process Control Control)

| ﬁfé Invoke { processing context, data references, parameter overrides ) | % Start ()
| #3 Stoe ()
v
«reaﬁ'zgn =realizes

wcontrols
E Event Location Control

4 (from Event Location Control)

=entitys

T

Q Processing Context
{from Process Control Elements)

amechanisms Lo P
QOSD (= susen’ '

(frem Mechanism Layer)

[Z] Event Locator Plugin IF

«plugin interfaces
{from Event Location Interfaces)

sutilitys i
Q Station Quality Metric Hility
{from Station Elements)

E Station Probability of Detection Utility

=utilitys
(from Event Elements)

eutilitys
E] event Quality Metric Utility
(from Event Elements)

‘_ aentitys
s Q Event Location
{from Event Location Elements)

=entitys
E Event Hypothesis
(from Event Elements)

«zentitys
=] Event Location Parameters
{from Event Location Elements)

aentitys
Q Event Location Plugin Parameters
{from Event Location Elements)

sconfiguration=
Q Event Location Configuration

(from System Configuration Elements)

=configurations=
Q Feature Measurement Defining
State Configuration
{from System Configuration Elements)

This diagram shows the Event Location Control class and related classes. Event Location

Control implements the Processing Control and Application Control interfaces so that it can be

started and stopped by System Control and used as part of a processing sequence. Event

Location Control depends on entity classes relevant to Events, such as Event Hypothesis and

Event Location.

41



Classes - Event Locator Plugin IF

wentitys aentitys aentitys
Q Event Hypothesis Q Event Location Plugin Parameters Q Event Location

{from Event Elements) {from Event Location Elements) (from Event Location Elements)

Event Locator Plugin IF
{from Event Location Interfaces)
i %Ccmpute Event Location ( event hypotheses, event location plugin parameters ) Event Location [1..%]

‘ =plugin interfaces

=realizes

T 1 «plugin interfaces
«plugin= . . ) Signal Feature Predictor Plugin IF
E Event Loetor Flugin {from Signal Feature Prediction Interfaces)
{from Event Location Plugins) R T L g ST e

i_%_'fbrﬁp;uté Signal Feature Prediction (]

«plugin=

Q Master Event Locator Plugin Q Multiple Event Locator Plugin

‘ =plugine
{from Event Location Plugins)

This diagram shows the Event Locator Plugin IF interface, which defines the common interface
that all event locator plugins must realize. The Master Event Locator Plugin and Multiple Event
Locator Plugin represent two plugins implementation, but more implementations may exist. An
Event Locator Plugin may access plugins implementing the Signal Feature Predictor Plugin IF.
For example, a locator may use a Signal Feature Predictor Plugin when calculating feature
measurement residuals. See ‘System Predicts Signal Features’ UCR for details about Signal
Feature Predictor Plugin.

42



Classes - Event Location Parameters

xentitys
Q Event Location Parameters
{from Event Location Elements)

1 1
zentitys zentitys
E Event Location Plugin Event Location Restraint
Parameters Parameters
(from Event Location Elements) (from Event Location Elements)
1 1
zentity= xentitys '
g Event Location Uncertainty Q Feature Measurement Defining State
Parameters Parameters
(from Event Location Elements) (from Signal Feature Measurement Elements)

This diagram shows details of the Event Location Parameters class. The Event Location
Parameters class is used by Event Location Control to determine general behavior of location
calculations and the Event Location Plugin Parameters class is provided as input to the Event
Locator Plugin to control specific algorithm behavior. Event Location Control creates the
parameters from the Event Location Configuration preconfigured by the System Maintainer (see
“Configures Processing Components” UCR). The Analyst may override the parameters (see
'Refines Event Location' UCR).

43



Classes - Event Hypothesis

=zentitys

Q Event
{from Event Elements)
__ =entitys T
£ Event Hyp is sentitys — sentitys
frem Event Elements) Q Association 1 E Signal Detection Hypothesis

= preferred location = (from Event Elements) : | (from Signal Dete;t!on Elements)

@E‘geograph ic regions | "

[Eg analyst

=] analyst comment

’ETE! is r?jec?_e_d | =entitys

] Feature Measurement
({from Signal Feature Measurement Elements) |
| Eg feature i}r;ce |

[C Measurement value
E‘E} measurement uncertainty

=entitys
wentitys - =] Event Location zentityn
E Event Location Parameters | frem Event Location Elements) =) Q Event Quality Metric
_(from Event Location Elements) I = etion - "_ (from Event Elements) |
[Eg uncertainty bounds {tr T
Eg feature measurement defining states RS = =entitys
= kb R ke | Ejsmtion Probability of Detection

{from Event Elements)

=entitys
] station Quality Metric

=entity= (from Station Elements)

L] signal Feature Prediction

{from Signal Feature Prediction Elements)
| \-_E',f-eeiure type |
= prediction value
Eg prediction uncertainty
1 station
= phase
L EE“ frequency

This diagram shows the portions of an Event Hypothesis that are used to compute Event
Location as well as the portions that are computed by the algorithm. The event location
algorithm analyzes Feature Measurements of Signal Detections Hypotheses associated to one or
more Event Hypotheses. The algorithm uses the station location associated with each Signal
Detection Hypothesis as well as features of the detection to compute the Event Location, which
is the primary output of the event location algorithm. Multiple different Event Locations (each
with a different set of Event Location Restraints, as stored in the Event Location Parameters
associated to that Event Location) may be computed for each Event Hypothesis. The Event
Location Parameters class captures the parameters that were provided as input to the event
location algorithm, enabling subsequent Analysts to recompute the location with the same
parameters.

Class Descriptions

<<configuration>> Event Location Configuration

Default event location configuration as configured by the System Maintainer. Contains
configuration about which Event Locator Plugins the System should invoke, as well as the types
of location uncertainty bounds and restrained locations the System should compute. The Analyst
may override the Event Location Parameters computed from this configuration.

<<configuration>> Feature Measurement Defining State Configuration

Represents all signal detection feature measurement defining state configuration in the system.
This includes all configurations used to determine which signal detection feature measurements

44



are by default defining and non-defining for various types of system calculations.

<<control>> Event Location Control
Responsible for controlling the event location computation. Retrieves necessary data, invokes
the appropriate Event Locator Plugin to compute the new location, and stores the result.

<<entity>> Association
Represents an association between a Signal Detection Hypothesis and an Event Hypothesis.

<<entity>> Event

Represents information about an Event. Keeps track of all the Event Hypotheses for the Event,
which Event Hypothesis is the preferred one for each processing stage, the active analysts for the
Event (i.e. whether the Event is under "active review"), whether the Event is "complete" for each
processing stage, and other Event-related information.

<<entity>> Event Hypothesis

Represents geophysical information about an Event as determined by an Analyst or through
pipeline processing. There can be multiple Event Hypotheses for the same Event (e.g. different
associated Signal Detection Hypotheses, different location solutions).

<<entity>> Event Location
Represents a computed location for an event.

<<entity>> Event Location Parameters

Represents the parameters that are used by Event Location Control. This includes which Event
Locator Plugin to invoke as well as the types of restrained event locations that Event Location
Control will invoke the plugin to compute. Initially set by Event Location Control based on the
Event Location Configuration defined by the System Maintainer, but the Analyst may select to
override parameter values when refining events.

<<entity>> Event Location Plugin Parameters

Represents all parameters passed to an Event Locator Plugin. This includes parameters
describing default feature measurement defining states and the types of uncertainty bounds the
plugin should compute. May also include parameters specific to the plugin being invoked.

<<entity>> Event Location Restraint Parameters

Represents restraints on the location coordinate spaces (lat, lon, depth or time) for the event
location computation. Restraints indicate which coordinate spaces are restrained and the
associated restrained value (or value range) to be used for that coordinate.

<<entity>> Event Location Uncertainty Parameters
Represents the type of uncertainty bound (Confidence, Coverage or K-Weighted), confidence

level and scaling factor for the locator to use when computing event location uncertainty.

<<entity>> Event Quality Metric
Represents the quality of a single event hypothesis. Event quality is based on a variety of event

45



quality statistics, possibly including the Station Quality Metric and Station Probability of
Detection for Stations with Signal Detections associated to the Event Hypothesis as well as for
Stations that did not detect the Event Hypothesis, the algorithms used to detect the event, event
location and event location uncertainty, etc.

<<entity>> Feature Measurement
Represents the value and uncertainty of a measured feature of a signal detection.

<<entity>> Feature Measurement Defining State Parameters

Represents defining state parameters for feature measurements. The parameters include the
following for each feature measurement for each type of calculation (e.g. location, magnitude,
etc.)

- Whether the feature measurement is initially defining or non-defining

- Whether an algorithm is free to toggle the defining state

The analyst can override the defining/non-defining state for these parameters, unless prohibited
by the default defining/non-defining state:

- Time, azimuth, or slowness measurement of a signal detection for event hypothesis relocation
- Signal Detection measurements for event hypothesis relocation based on channel

- Signal Detection measurements for event hypothesis relocation based on signal detection phase
assignment

<<entity>> Processing Context

Represents the context in which data is being stored and/or processed. This includes the
Processing Stage (either automatic or interactive) and Interval performing the processing session
(e.g. processed by Analyst vs. processed by System). For Analyst processing, may identify the
Analyst work session. For System processing, may identify the Processing Sequence and/or
Processing Step being executed (including a way to identify a particular Processing Sequence
and Processing Step among the many possible instantiations), the visibility for the results
(private vs. global), and the lifespan of the data (transient vs. persistent). This information is
needed by the Processing Sequence Control to manage the execution of Processing Sequences,
which may execute in the context of an Analyst refining an Event or in the context of the system
initiating automatic processing. It is also needed by the Object Storage and Distribution (OSD)
mechanism to determine how to store and distribute the data.

<<entity>> Signal Detection Hypothesis

Represents geophysical information about a Signal Detection as determined by an Analyst or
through pipeline processing. There can be multiple Signal Detection Hypotheses for the same
Signal Detection (e.g. different onset times, different phase labels).

<<entity>> Signal Feature Prediction
Represents a predicted signal feature (e.g., travel time, azimuth, slowness, amplitude, probability

of detection) and the associated uncertainties.

<<entity>> Station Probability of Detection
Represents a Station’s probability of detecting an Event Hypothesis.

46



<<entity>> Station Quality Metric

Represents a Station’s quality for a particular time. Separate station quality metrics can be
computed for a Station with each metric based on different selections of the Station’s raw and
derived waveforms (e.g. Station Quality Metric could be computed using Waveforms from a
Station’s raw Channels and a separate quality metric could be computed for a beam created from
the Station’s waveforms).

<<interface>> Application Control IF
Defines the interface implemented by all <<control>> classes in the system that are controlled by
System Control.

<<interface>> Processing Control IF

Defines the interface implemented by all <<control>> classes in the system that are controlled by
the Processing Sequence Control <<mechanism>>. <<control>> classes realize this common
interface to support configurable processing sequence definition and execution. Processing
Sequence Control uses the Invoke() operation declared in Processing Control IF to call
<<control>> classes while executing processing sequences. When called in this way the
<<control>> classes operate on the provided data (e.g. event hypotheses, signal detections, etc.)
using either default parameters configured by the System Maintainer and loaded by the
<<control>> class on startup or override parameters provided to the Invoke() operation.

<<mechanism>> OSD
Represents the Object Storage and Distribution mechanism for storing and distributing data
objects internally within the system.

<<mechanism>> Processing Sequence Control
Mechanism for executing and controlling processing sequences configured by the System
Maintainer.

<<plugin interface>> Event Locator Plugin IF
Standard interface for all Event Locator plugins. All Event Locator plugins in the system realize
this interface.

<<plugin interface>> Signal Feature Predictor Plugin IF

Standard interface for all Signal Feature Predictor plugins. All Signal Feature Predictor plugins
in the system realize this interface. Plugins that implement Signal Feature Predictor IF may
predict different types of signal features, such as travel time, azimuth, slowness, amplitude, and
probability of detection.

<<plugin>> Event Locator Plugin

A nominal class representing Event Locator Plugin implementations that may be plugged in to
the system behind the Event Locator IF plugin interface. Event Locators are responsible for
calculating event locations. Configuration for specific plugin implementations include the
settings for controlling their behavior (e.g. settings for max number of iterations, which Signal
Feature Predictor Plugin and Earth Model Plugin to use, etc.).

47



<<plugin>> Master Event Locator Plugin

Specialization of Event Locator Plugin that locates an event based on a specified "master event"
(i.e. Master Event Relocation). Configuration for this plugin includes information required to
select which master events to use (potentially based on geographic region), which signal
detections and feature measurements to use, etc. Parameters for this plugin may include a
particular master event, the location and location uncertainty of the master event, and feature
measurements and associated uncertainties pertinent to location computation for signal
detections associated to the master event that also exists on the event under refinement (i.e.
signal detections with the same channel and phase).

<<plugin>> Multiple Event Locator Plugin

A specialization of Event Locator Plugin that simultaneously locates a set of two or more event
hypotheses relative to each other (i.e. Multiple Event Relocation). Configuration for this plugin
includes information required to select which events to use (potentially based on geographic
region), which signal detections and feature measurements to use, etc. Parameters for this plugin
may include the set of event hypotheses to relocate, feature measurements (including associated
uncertainties) pertinent to the location computation, and a ground truth or fixed location used as
a starting location when calculating absolute locations for each relocated event hypothesis.

<<utility>> Event Quality Metric Utility
Utility class that computes the event quality metric. The quality metric may be based on how

well an event hypothesis meets the event definition criteria, the Event Hypothesis Creation
Method, etc.

<<utility>> Station Probability of Detection Utility
Utility that computes station probability of detecting events. The utility may base this
probability on either modeled noise or on actual noise recorded at a station.

<<utility>> Station Quality Metric Utility

Utility class that computes the station quality metric. Computes the metric for stations using
waveforms, SOH information, Waveform QC Masks, etc. and also computes the metric for
configured derived channels (e.g. detection beams). Can compute a continuous station quality
metric for use in performance monitoring and a different but related station quality metric based
on an event hypothesis.

48



Sequence Diagrams

Flow Overview

g Flow Overview

ref
Méin Flow - System

Refines Event
Location

W

ref

Expansion Flow - Event
Location Control - Compute
Event Locations

\

ref
Expansion Flow - Event

Locator Plugin {(notional) -
Compute Event Location

49

ref
Expansion Flow - Event

Location Control -
Compute Quality Metrics




Main Flow - System Refines Event Location

=’ Main Flow - System Refines Event Location

Q :Processing Sequence :Event Location Q 105D
Caontrol Control = :

1: Invoke { processing context, data references, parameter overrides )
— =

-
’ff.-’
J 2: Get Event Location Parameters { event hypothesis identifiers, processing context )
The "data references” parameter T
specifies the event hypotheses -
Lo penteseand 'paramete_rs' 3: Get Event Hypotheses { event hypothesis identifiers )
contains parameter overrides. 2

]
4: Compute Event Locations ( event hypathesis identifiers, event location parameters, processing context )
Expansion Flow - Event Location Control - Compute Event Locations|

5: Set Invocation Completion Status { processing con‘fex‘t ]

This flow shows how the system refines event location. This flow is stimulated by the
Processing Sequence Control mechanism as part of executing an automatic processing sequence.
The precise triggering conditions for such sequences are configured by the System Maintainer
(see "Defines Processing Sequence" UCR).

Operation Descriptions

Operation: Event Location Control::Get Event Location Parameters()

Creates the Event Location Parameters for each Event Hypothesis based on defaults configured
by the System Maintainer (represented by the Event Location Configuration class) and the Event
Location Parameters most recently used by either the System or an Analyst to locate the Event
Hypothesis’ preferred location. Default parameters may augment parameters used during the
most recent location calculation if the event has changed (e.g. signal detection associations have
been added to or removed from the hypothesis since the last time its location was computed).

50



Expansion Flow - Event Location Control - Compute Event Locations

E] Expansion Flow - Event Location Control - Compute Event Locations

= iEvent Location | E:E‘.’ent Location g :Event | = :Event Location | :Event H:osp |
Control Parameters Hypothesis Plugin Parameters @ Locator - |

Piugin IF

1: Get Event Location Restraint Parameters ()
—w»

| [For each setlof restraints, |
| Invokes the Event Locator plugin that
1: Set Event Location Restraints { event location restraint ) Event Lecation Control selected using
L2 the Event Location Parameters.

2

| I s

2: Compute Event Location { event hypotheses, event location plugin parameters ) : Event Ldfcation n.=
2ok
-

Expansion Flow - Event Locator Plugin (notional) - Compute Event Location |

| [for each Evept Hypothesis, ]

1: Mark Preferred Location ()

------------------------ Mark the preferred Event Location as such
""""""""" ~| based on Event Location Parameters.

2: Set Event Locations ( event locations )

Ll

3: Update Event Hypothesis { event locations, event location parameters, processing context ) L
[ a Station Probability of Detection, Event
| Quality Metric, and Station Quality Metrics
get stored along with the Event Hypothesis.

.Expans.or! Flow - Event Location Control - Compute Quality Metrics \ |

4: Store Event Hypothesis ( event hypothesis, processing context )

g |

/:

For the "processing context”, just pass
along the same one that was passed in
from the Processing Sequence Control
mechanism on the main flow

This flow shows how the Event Location Control invokes the Event Locator Plugin to compute
locations for each provided event hypothesis. The control class selects which Event Locator
Plugin to invoke based on the event locator type specified in the Event Location Parameters and
then invokes the Event Locator Plugin through the Event Locator Plugin IF interface. The Event
Locator Plugin returns Event Locations. Event Location Control updates the Event Hypotheses
with the Event Locations. Note that this flow may also be invoked directly from the Refines
Event Location Display (see 'Refines Event Location' UCR).

Operation Descriptions
Operation: Event Locator Plugin IF::Compute Event Location()

The interface method for an Event Location Plugin to compute an event location. The plugin
may compute the location using teleseismic and regional seismic signal detections.

51



Operation: OSD::Store Event Hypothesis()
Store the given Event Hypothesis with the given lifespan (persistent vs. transient) and visibility
(private vs. global) as specified by the given Processing Context and notify relevant subscribers

via callbacks.

Expansion Flow - Event Locator Plugin (notional) - Compute Event Location

7] Expansion Flow - Event Locator Plugin (notional) - Compute Event Location

:Event Q :Event Location | :Signal Feature E :Event
Q Locator Plugin Parameters @ Predictor Plugin Location
! IF

Plugin
[for each Event Hypothesis,, ]

| [Repeat until residuals are minimized, 1 |

[For each feature measurement, |
1:'Get Signal Feature Predictor For Feature Measurement () |

————————————— Expansion flow is located in “System Predicts
| Signal Features’ UCR.

2: Compute Signal Feature Preldiction { signal feature predid_orx{flfugin parameters, source location, receiver location, phase, frequency, time )
i "

Expansion Flow - Signal Feature Predictor Plugin - Compute Signal Feature Prediction|

|_3: Compute Residual (]}

_________________ ” Capture the residual, uncertanties, weights, and whether the feature measurement was
defining. The plugin returns these parameters as Event Location Plugin Specific Results,

1: Cqmpute Location Coordinates ( event location restraints )

.

2?.' Set Signal Feature Predictians ( signal feature predictions )

—Y

1: Compute Uncertainty Bounds () |

]

Create the object returned by this flow (see "Classes -
Event Hypothesis” for structure of Event Location class).

2: Oreate (location coordinates, event location restraints, feature measurement data, u'rlceftiainty bounds )
1 PRy
=y

This flow notionally shows how a particular Event Locator plugin might compute a location for a
batch of event hypotheses. The flow shown here may not apply to all Event Locator Plugins. In
this example, the Event Locator Plugin iteratively computes residuals between observed vs.
predicted feature measurements and updates the location coordinates until the residuals no longer
improve. To compute predicted feature measurements, the Event Locator uses a Signal Feature
Predictor plugin. The specific predictor used may vary for each prediction based on parameters

52



specified in the Event Location Plugin Parameters class. The Event Locator Plugin can set the
defining/non-defining state for each signal detection measurement while computing the event
location.

As a possible variation of this flow for performing Master Event Location, the flow might look
essentially the same except that instead of using a Signal Feature Predictor to get the predicted
feature measurements the Event Locator might use the feature measurements associated with a
designated "master event" (obtained from the Event Location Plugin Parameters class). A
variation of this flow to simultaneously relocate multiple event hypotheses relative to each other
might use feature measurement differences between all of the input event hypotheses to
simultaneously find locations for each event hypothesis. The algorithm might iterate this process
until the entire set of locations for the event hypotheses no longer improves (i.e. the locations are
globally optimal).

Operation Descriptions
Operation: Event Locator Plugin::Compute Residual()

Compute the difference between the signal feature measurement and the signal feature
prediction, as well as the residual uncertainty.

53



Expansion Flow - Event Location Control - Compute Quality Metrics

2] Expansion Flow - Event Location Control - Compute Quality Metrics

rEvent Location | :Station Q :Station Quality Q (Event Quality
Control Q Probability of Metric Utility Metric Utility
T Detection = T ; T

Utility

The System Maintainer configures whether

the guality metrics (i.e. Station Quality

Metric, Station Probability of Detection, and

Event Quality Metric) are computed after an

] event relocation based on parameters such

=2 as how much the event location changed,

= the reason why the event relocation

calculation occurred, etc (see 'Defines
Processing Sequence’ UCR).

Expansion Flow - Station Quality Metrc Utility - Compute Station Quality Metrics |

Event Location Parameters . \‘\.\
contain the Station Probability =
of Detection Parameters. Flows located in "System Builds Event
using Signal Detections"UCR.
e ;

S
| | i
2: Compute Station ﬁuhahil;y\h! Detection { station probability of detection parameters, station, event i}p‘puthesis )
e m &

Expansion Flow - Station Probability of Detection Utility - Compute Station Probability of Detection|

3: Compute Event Quality Metric ('e'.rent hypothesis )

: 4

This flow shows how the Event Location Control class recomputes quality metrics based on the
Event Hypothesis' updated event locations.

Operation Descriptions

None

State Machine Diagrams

None

SSD Mappings

General:
S-1563: [ Threshold] The System shall locate event hypotheses found using waveform correlation
processing using the same location algorithms as events found using other types of event

processing.

S-1572: [Threshold] The System shall compute the station quality metric for all events.

54



S-1576: [ Threshold] The System shall store the station quality metrics for all stations for each
event hypothesis.

S-1580: [Threshold] The System shall recompute the event hypothesis quality metric for an
event hypothesis when any of the event hypothesis quality statistics used to calculate the event
hypothesis quality metric are updated.

S-1588: [Threshold] The System shall store the event quality metric for each event hypothesis.

S-1592: [ Threshold] The System shall compute event hypothesis relocations using seismic,
hydroacoustic, and infrasound signal detection feature measurements.

S-1593: [Threshold] The System shall compute event hypothesis relocations using the signal
detection feature measurements from a single station.

S-1594: [Threshold] The System shall compute event hypothesis relocations using the signal
detection feature measurements from multiple stations.

S-1595: [ Threshold] The System shall compute event hypothesis relocation uncertainty bounds.

S-1596: [ Threshold] The System shall compute the uncertainty coverage ellipse for each event
hypothesis relocation.

S-1600: [Threshold] The System shall set the defining/non-defining state for signal detection
measurements during event hypothesis relocation processing.

S-1619: [Threshold] The System shall store the confidence level of each computed event
hypothesis location uncertainty bound.

S-1620: [ Threshold] The System shall store the type (i.e., confidence, coverage, or k-weighted
with the associated weights) of each location uncertainty bound.

S-1623: [Threshold] The System shall store the sum squared weighted residual for each event
hypothesis location.

S-1624: [Threshold] The System shall store the defining/non-defining state for each signal
detection measurement associated to a stored event hypothesis.

S-1631: [Threshold] The System shall compute event hypothesis relocations using teleseismic
and regional seismic signal detections.

S-1640: [ Threshold] The System shall perform master event relocation using travel time
differences.

S-1653: [Threshold] The System shall compute new event hypothesis magnitude estimates when

55



a new event hypothesis location is computed.

S-2036: [ Threshold] The System shall use configured default defining/non-defining state settings
and precedence rules to determine the initial defining/non-defining state for each parameter.

S-2043: [Threshold] The System shall store automatic and interactive processing results.

S-2223: [Threshold] The System shall store all data and derived processing results to persistent
storage as soon as the data and/or derived processing results are available.

S-6290: [Threshold] The System shall perform multiple event relocation using differences in
signal detection feature measurements.

Notes

General:

1. Multiple Event Relocation (such as Joint Hypocenter Determination) is considered to be a
specialized research activity and is thus invoked by the Researcher in 'Performs Multiple Event
Location' UCR instead of by the Analyst from 'Refines Event Location' UCR.

2. Computation of the event quality metric after an event is relocated is configurable (see
'Defines Processing Sequence' UCR). Configuration could include selection of a minimum
change in location that would result in recomputing the event quality metric or selection of when
to recompute the event quality metric based on the cause for the event relocation.

56



IDC Use Case Realization Report
UCR-03.02 Refines Event

Use Case Description

This architecturally significant use case describes how the Analyst refines an event hypothesis.
The Analyst checks waveform quality (see 'Determines Waveform Data Quality' UC). For
waveforms of sufficient quality, the Analyst enhances signals and suppresses noise on
waveforms for relevant stations (see 'Enhances Signals' UC), adds and associates missing
detections, and modifies or unassociates detections already associated with the event hypothesis
(see 'Detects Signals' UC). The Analyst rejects event hypotheses that are invalid. For valid event
hypotheses, the Analyst measures signal features associated with the detections (see 'Measures
Signal Features' UC) and evaluates the moment tensor ('Evaluates Moment Tensor' UC). The
Analyst uses these signal features to refine the location (see 'Refines Event Location' UC) and
magnitude (see 'Refines Event Magnitude' UC) of the event hypothesis. The Analyst compares
events to determine how similar events were constructed (see 'Compares Events' UC). The
Analyst repeats these steps until satisfied with the results.

This use case is architecturally significant because it encompasses interaction between a large
number of capabilities available to Analysis, including synchronized interaction among those
capabilities, the Analyst ability to initiate automatic processing algorithms with overridden
System parameters, and capture and display of provenance for Analyst actions.

Architecture Description

The Analyst refines an Event by selecting an Event on the Event List Display to open the Refines
Event Display for the Event. The Refines Event Display retrieves the current preferred Event
Hypothesis for the Event to use as a starting point, creates a local copy of it for the current
processing stage, and provides the Analyst with the ability to refine it (depicted in included use
cases). As the Analyst refines the Event the Event Hypothesis is updated and stored transiently
in a private context via the OSD mechanism to make it available to the Processing Sequence
Control mechanism for further automatic processing (the Processing Sequence Control
mechanism is described in "System Detects Event" UCR). To save their changes, the Analyst
selects to save the Event Hypothesis, which the display handles by storing the Event Hypothesis
in a global context to persistent storage via the OSD.

57



Use Case Diagram

Analyzes é\(_ents

oc\n"l;lude»
Analyst
LT ._csi_n_cluple»
i -~ Refines Event. 1
: "'«inc_l_ude»
- - Compares Events
=include=
Determines Waveform Data Quality :
’ wincludes 2
=include= sinclude»

«intludes=

. Evaluates Moment Tensor

Enhances Signals

Refines Event Magnitude
Detects Signals

) Refines Event Location
Measures Signal Features

58



Class Diagrams

Classes - Refines Event Display

«boundary= |

| H Analyst

aentitys
=] Processing Context
(from Process Control Elements)

- aetilitys
= Association Conflict Checker
(from Event Elements)

«cantrol»

=] Signal Feature Prediction Control
L gf_ro_m Si_g_!wal Feature Predicti_on Cc_mtro_\] |

amechanism=
= osp

adisplay=
£ Analyzes Events Display
(from Event Wiews)

«display»
[ Refines Event Display
(from Event Wiews)

«entity»
= Event Catalog
(from Event Elements)

* «display»
E| Waveform Analysis Display

=display=
[=] Event List Display

=entity=
E Event
(from Event Elements)

=entitys
H Interval
(from Process Contral Elements)

agntity=

= Signal Detection Template

AromEvent Elements)

This diagram shows the Refines Event Display and related classes pertaining to this realization.
The Analyst opens the Refines Event Display from the Analyzes Events Display. This display
subscribes for the Event being refined in order to warn the Analyst if the Event is under active
review by another Analyst in the same interval. The display subscribes for Intervals in order to
warn the Analyst if the interval containing the Event is under active review by another Analyst
(see "Scans Waveforms and Unassociated Detections" UCR). The Refines Event Display uses
the Association Conflict Checker class to check for association conflicts with other Events
whenever the current Event is modified or another Event in the interval is saved. The display
also provides the Analyst with the ability to create Signal Detection Templates, which it stores in
the OSD. Refines Event Display stores the refined Event in the OSD.

59



Classes - Refines Event Display - Sub-displays

i, adisplay» " p «display»
|=| Determines Waveform Quality Display [ 0.1 -+ = Compares Events Display
(from Event Views) . (from Event Views)
adisplay= * «display=
= Enhances Signals Display E =+ Kl Refines Event Magnitude Display

(from Event Views) e— . - — i - 0.1 (from Event Views)

| adisplay=
| El Refines Event Display
=display» " 5] (from Event Views) o «display=
=] Measures Signal Features Display <—— < ~——— - K Refines Event Location Display
(from Event Views) e (from Event Location Views)
0.1

adisplay=
= Moment Tensor Display
(from Event Views)

This class shows sub-displays of the Refines Event Display. The Refines Event Display creates
and manages these sub-displays based on Analyst actions. Analyst interactions with these sub-
displays are described in the corresponding UCRs; however, in general, the OSD mechanism is
used to synchronize information between the displays. When the Analyst first opens the Event,
the Refines Event Display creates a new Event Hypothesis and stores it in the OSD (in a private
context, not visible to other Analysts). The Refines Event Display then subscribes for changes to
this Event Hypothesis via the OSD. As the Analyst interacts with the various sub-displays, those
Analyst actions may trigger processing on the privately stored Event Hypothesis; however, the
sub-displays do not have knowledge of which processing steps will be performed since the
processing sequences to be executed in response to Analyst actions are configurable (see
"Defines Processing Sequence" UCR) and known only by the Processing Sequence Control
mechanism. The Refines Event Display is informed of any processing performed on the Event
Hypothesis via OSD callbacks.

Classes - Event History Display

aentity=
El Event
3 (from Event Elements)
- =display= )
=boundarys |- -+ [ Event History Display =~
| g Analyst (from Event Views)
=gntitys
"> E Event Hypothesis

(from Event Elements)

This diagram shows the Event History Display and related classes. The Analyst may use the
Event History Display to select to begin their refinement with any hypothesis in an Event’s
history.

60



Classes - Event

agntity»
= Event
(from Event Elements)
Eg preferred hypothesis per stage |
g active analysts

event completion status per stage

*

=enumerations
=] Event Completion Status
(from Event Elements)
=lIn Progress
=l Complete
= Complete with Conflict
| = Complete For Stage

| Eg preferred location

aentity»
E Event Hypothesis

(from Event Elements) agntity»

H Processing Stage
(from Process Contral Elements)

[Eg geographic regions
Eg analyst

Eg analyst comment
Eg is rejected

| Egis reported

1

parent hypothesis

Event and Event Hypaothesis have relationships
to other classes. This diagram only shows the
ones that are relevant to this UCR.

This diagram shows details of the Event and Event Hypothesis classes relevant to this UCR.
Refinement of an Event results in a new Event Hypothesis. The Analyst potentially creates

multiple Event Hypotheses for a given Event during a single processing stage, and designates
one of them as the "preferred" Event Hypothesis for the Event for that stage (each stage can have
a different preferred Event Hypothesis for the Event). Each Event also has an Event Completion

Status, which reflects the Analyst's determination of the level of completeness of the Event
within the stage. The Analyst specifies an Event Completion Status of "In Progress" or
"Complete" when saving the Event. The transition to "Complete For Stage" is covered in a

separate UCR (see "Marks Processing Stage Complete"” UCR).

Classes - Association Conflict Checker

«entity=
= Event
| (from Event Elements)
Eg preferred hypothesis per stage
[ active analysts

=(tilitys
H Association Conflict Checl
(from Event Elements)

«entity
= Signal Detection
| (from Signal Detection Elements) | - o

This diagram shows details of the Association Conflict Checker class.

Events, Associations, and Signal Detections from the OSD and checks for the case where more
than one Event has a preferred Event Hypothesis for the stage that has a related Association to a

Signal Detection Hypothesis for the same Signal Detection.

61

agntity=
> E Event Hypothesis
* (from Event Elements) |

¥

__ «entity=
= Association
(from Event Elements)

aentity=
= Signal Detection Hypothesis
(from Signal Detection Elements)

ak

[E5 onset time
| Eg onset time uncertainty

[Eg phase

C phase confidence
[Eg detectar algorithm
Earejected

The class retrieves



Classes - Event Catalog

«entity=
= Event Catalog
{from Event Elements)

[Eg name
| Eg description

*

acgntity=
E Event
| (from Event Elements) _

This diagram shows details for the Event Catalog class. The Analyst uses the Refines Event
display to create Event Catalogs and to update Events contained in the catalogs.

Classes - Signal Detection Template

«gntity=
& Signal Detection Template ;
ifrom Event Elements) = wentity= _
Eg summary of detections e
Eg summary of event 1 (fr_c_:m Event Elemen_’gsj
Eg creator i
| (g creation time

created from

wentity
E Association
(from Event Elements)

3 *

14

“Erltit}"”
ESignal Detection Hypothesis
(from Signal Detection Elements)

This diagram shows details for the Signal Detection Template class. The Analyst may create a
Signal Detection Template via the Refines Event Display based on the Signal Detection
Hypotheses associated to the current Event Hypothesis.

62



Class Descriptions

<<boundary>> Analyst
Represents the Analyst actor.

<<control>> Signal Feature Prediction Control

Responsible for controlling the signal feature prediction computations. Retrieves necessary data,
invokes the appropriate Signal Feature Predictor Plugin to compute the desired signal feature
prediction, and stores the result.

<<display>> Analyzes Events Display
Display that provides the Analyst with the ability to analyze data within a specified time interval
in order to find or refine Events.

<<display>> Compares Events Display
Display that provides the Analyst with the ability to compare Events.

<<display>> Event List Display

The Event List Display provides a list of Events related to the current context of an Analyst's
analysis activities. Primarily the Event List shows the Events within the selected Interval times.
Alternately, the Event List shows the Events returned as result of a search or the list of Events
selected by the Analyst. The Event List provides the interface to select an Event for further
analysis.

<<display>> Refines Event Display
Display that provides the Analyst with the ability to refine an Event. Each saved refinement of
the Event results in a new Event Hypothesis.

<<display>> Refines Event Location Display
Provides the Analyst with ability to enter Event location parameters and initiate computation of a
location for an Event Hypothesis.

<<display>> Waveform Analysis Display

Displays a set of waveforms and Detection Feature Maps and provides the Analyst with the
ability to interact with them (e.g. create/modify/reject Signal Detections, associate/unassociate
detections and Events).

<<entity>> Association
Represents an association between a Signal Detection Hypothesis and an Event Hypothesis.

<<entity>> Event

Represents information about an Event. Keeps track of all the Event Hypotheses for the Event,
which Event Hypothesis is the preferred one for each processing stage, the active analysts for the
Event (i.e. whether the Event is under "active review"), whether the Event is "complete" for each
processing stage, and other Event-related information.

63



<<entity>> Event Catalog

A named catalog of Events. Event Catalogs group Events with common features (e.g. ground
truth catalogs, special event catalogs, large event catalogs, etc.) Analysts create Event Catalogs,
update which Events are listed in the catalogs, and use the catalogs to help search for Events with
specific features. The catalog logically lists Events rather than specific Event Hypotheses.

<<entity>> Event Hypothesis

Represents geophysical information about an Event as determined by an Analyst or through
pipeline processing. There can be multiple Event Hypotheses for the same Event (e.g. different
associated Signal Detection Hypotheses, different location solutions).

<<entity>> Interval

Class for tracking the status of interactive or automatic processing on a specific timeframe of
data. Specialized intervals exist for Processing Stage, Processing Activity, and Processing
Sequence.

<<entity>> Processing Context

Represents the context in which data is being stored and/or processed. This includes the
Processing Stage (either automatic or interactive) and Interval performing the processing session
(e.g. processed by Analyst vs. processed by System). For Analyst processing, may identify the
Analyst work session. For System processing, may identify the Processing Sequence and/or
Processing Step being executed (including a way to identify a particular Processing Sequence
and Processing Step among the many possible instantiations), the visibility for the results
(private vs. global), and the lifespan of the data (transient vs. persistent). This information is
needed by the Processing Sequence Control to manage the execution of Processing Sequences,
which may execute in the context of an Analyst refining an Event or in the context of the system
initiating automatic processing. It is also needed by the Object Storage and Distribution (OSD)
mechanism to determine how to store and distribute the data.

<<entity>> Processing Stage

Represents a named stage of data processing, which may be part of the System Maintainer-
defined workflow or an Analyst-defined stage outside the workflow. All Processing Results are
associated to a Processing Stage.

<<entity>> Signal Detection

Represents information about a Signal Detection and keeps track of all the Signal Detection
Hypotheses for the Signal Detection. Represents information about a Signal Detection and keeps
track of all the Signal Detection Hypotheses for the Signal Detection. For an unassociated Signal
Detection the preferred Signal Detection Hypothesis is the most recently created Signal
Detection Hypothesis. For an associated Signal Detection the preferred Signal Detection
Hypothesis is the one associated to a preferred Event Hypothesis.

<<entity>> Signal Detection Hypothesis

Represents geophysical information about a Signal Detection as determined by an Analyst or
through pipeline processing. There can be multiple Signal Detection Hypotheses for the same
Signal Detection (e.g. different onset times, different phase labels).

64



<<entity>> Signal Detection Template

A template that represents the pattern of Signal Detections for an Event (i.e. channels detected,
relative positions for each detection, phases, etc.). An Analyst may apply the template to quickly
build new Events that match the pattern of detections. Signal Detection Associator Plugins (see
“System Builds Events using Signal Detections” UCR) may also use Signal Detection Templates
to build new Event Hypotheses and associate additional detections to Event Hypotheses
matching the template. Also includes summary information about the original Event from which
the template was created (e.g. Event location, magnitude, etc.), as an aid to the Analyst in finding
and applying a relevant template.

<<mechanism>> OSD
Represents the Object Storage and Distribution mechanism for storing and distributing data
objects internally within the system.

<<utility>> Association Conflict Checker

Utility class for checking that preferred Event Hypotheses within a processing stage do not share
any Signal Detections.

65



Flow Overview

2 Flow Overview

£

Sequence Diagrams

L

ref

Expansion Flow - Analyst Selects
Different Event Hypothesis

Expansion Flow - Refines
Event Display - Cpen Event

Main Flow - Refines
Event

Anal

ref

Expansion Flow - Analyst Rejects
Event

A

Expansion Flow - Analyst Saves
Event Hypothesis

ref

Expansion Flow - &nalyst Saves
Waveforms

ref

Expansion Flow - Analyst

Expansion Flow -

Updates Comment for Event
rst Works Event i Hypathesis

ref
Alternate Flow - Refines Event

Display - Handle 05D
Callbacks

—

ref

Expansion Flow - Association
Conflict Checker - Check For
Conflicts

Expansion Flow - Refines
Event Display - Suspend

ref

Expansion Flow - Refines Event
Display - Resume

Expansion Flow - Refines
Event Display - Close Event

Expansion Flow - Analyst
Manages Event Catalogs

m

Expansion Flow - Refines Event
Display - Save Event Hypothesis

ref

Expansion Flow - Analyst Sets
Preferred Hypothesis for Event

ref

Expansion Flow - Analyst Creates
Signal Detection Template

T

ref

Expansion Flow - Analyst Creates
MNew Event from Copy

Expansion Flow - Analyst
Refreshes Displayed Data

ref

Expansion Flow - Analyst Loads

Additional Waveforms

Expansion Flow - Analyst
Displays Predicted Signal
Detections

66




Main Flow - Refines Event

E1Main Flow - Refines Event

= Analyst :Refines Event
el [N
isplay

1: Open Event { event, event hypothesis )

Expansion Flow - Refines Event Display - Open Event

2: Close Event ()

Expansion Flow - Refines Event Display - Close Event

This flow shows the main flow for refining an Event. The Refines Event Display is typically
opened with an Event, in which case the display automatically determines which Event
Hypothesis to use as a starting point (the Analyst can select a different Hypothesis as a starting
point - see "Expansion Flow - Analyst Selects Different Event Hypothesis"). The Analyst may
also open the Refines Event Display with a specific Event Hypothesis to refine. In this case the
display uses that Hypothesis as the starting point.

Operation Descriptions
Operation: Refines Event Display::Open Event()

Open the given Event for refinement in the current processing stage, using the given Event
Hypothesis as a starting point.

67



Expansion Flow - Refines Event Display - Open Event

/] Expansion Flow - Refines Event Display - Open Event

=] :Analyst & :Refines Event H:osp H :Event & local copy:Event H ievent
Display T Hypothesis

; . . Subscribe far all events in the current interval (including the
1: Subscribe for Events {Tlmefra_rfe"]_/ﬂ £ current one). The display needs this to monitor assaciation
ke conflicts with other events.

2; Add Active Ana\yfst ( user)

Persistent with global visibility.
3: Store Event ( event, processing context)
L o i | Lets other Analysts know about

current Analyst.

4: Create New Event Hypothesis ( event hypothesis )

o~
| 5:Add Event Hypofhesis ( event hypothesis ) .
-
6: Store Event Hypothesis { event hypothesis, processing context )
e
| g
0
el :
7: Subscribe for Event Hypothesis () Transient with private visibility,
o
8: Get Preferred Location ()
e
9: Subscribe for Signal Detections ( Timeframe )
L ..,
o
B S Timeframes here are based on the time in
10: Subscribe for Waveforms ( Timeframe ) -~ the event location. As possible
L= optimization, could use earth model to

.~ predict travel times in order to minimize
- 1 o vl these timeframes.
11: Subscribe for Associations ( Timeframe ) .~

-

L

12: Get Comment History ()

y

13: Update Display ()

-

14: Analyst Works Event ( )
e

Expansion Flow - Analyst Werks Even

This flow shows how the Refines Event Display opens an Event for refinement. The Event
Hypothesis to use as a starting point is an input to this flow. The system keeps track of all the
analysts that are working an Event ("active analysts") and warns if the Event is under active
review by another analyst or overlaps an interval that is under active review by another analyst
(see "Alternate Flow - Refines Event Display - Handle OSD Callbacks"). The display creates a
new Event Hypothesis instance based on the passed-in Event Hypothesis. The display subscribes

68



for detections and waveforms around the Event in order to display them. The comment history is
also displayed. After the display is open the Analyst can perform several analysis functions as
described in Expansion Flow - Refines Event Display - Analyst Works Event.

Operation Descriptions

Operation: OSD::Subscribe for Events()
Subscribe for changes to Event objects within the given timeframe. Callbacks are invoked on
subscribers any time an Event within the timeframe is added or modified.

Operation: OSD::Subscribe for Signal Detections()

Subscribe for updates regarding Signal Detection creations, modifications, and associations
occurring within the specified timeframe. This includes updates for new or modified
unassociated Signal Detections.

Operation: OSD::Subscribe for Waveforms()

Subscribe for updates regarding raw and derived waveforms occurring within a specified
timeframe. This includes information about what waveforms have been acquired by the System
as well as what derived waveforms have been formed, but does not include the actual waveform
data.

Operation: Event::Add Active Analyst()
Add the given Analyst to the set of active Analysts for the Event. If the Event has active
Analysts it is said to be under "active review".

Operation: OSD::Store Event()
Store the given Event with the given lifespan (persistent vs. transient) and visibility (private vs.
global) as specified by the given Processing Context and notify relevant subscribers via

callbacks.

Operation: Event Hypothesis::Create New Event Hypothesis()
Create a copy of the given Event Hypothesis. The copy has all of the same information as the
original (e.g. same detections, location, etc.), with the following exceptions:

- The copy points to the original as its parent
- The copy starts out with an empty Analyst comment

Operation: OSD::Store Event Hypothesis()

Store the given Event Hypothesis with the given lifespan (persistent vs. transient) and visibility
(private vs. global) as specified by the given Processing Context and notify relevant subscribers
via callbacks.

Operation: Refines Event Display::Update Display()

Update the display of the Event Hypothesis that is currently being refined to reflect any changes
that may have occurred. Indicate items that are out-of-date or inconsistent (e.g. beam may be
out-of-date after refining Event location).

69



Operation: Event::Get Comment History()
Return all Analyst-entered comments associated with the Event.

70



Expansion Flow - Analyst Works Event

'] Expansion Flow - Analyst Works Event

‘Analyst ‘Refines Event local copy:Event
& analy ‘ = ‘ i py:

—'— Display Hypothesis
| \ |

Main Flow - Determines Waveform Data Quality ‘

Main Flow - Enhances Signals

"

Main Flow - Detects Signals

Main Flow - Measures Signal Features

Main Flow - Refines Event Location

Analyst performs any of these flows in any
‘ order,

ik R R . ‘ These flows depict the Analyst working on
Main Flow - Refines Event Magnitude the current local capy of the Event

. ‘ Hypothesis. The Analyst may select to
ref work on a different hypothesis (shown in
Main Flow - Evaluates Moment Tensor ‘ "Expansion Flow - Analyst Selects Different

I Event Hypothesis"), in which case a new

local copy will be loaded. The flows on
- this diagram apply to whatever event
Main Flow - Compares Events hypathesis is currently loaded.

Main Flow - Provides Analyst Feedback ‘
T

Expansion Flow - Analyst Selects Different Event Hypothesis|
I

Expansion Flow - Analyst Saves Waveforms
T

|Expanswcn Flow - Analyst Saves Event Hypothesis
I

Expansion Flow - Analyst Updates Comment for Event Hypothesis|
T

Expansion Flow - Analyst Sets Preferred Hypothesis for Event

| Expansion Flow - Analyst Manages Event Catalogs ‘
I

Expansion Flow - Analyst Rejects Event

[Expansion Flow - Analyst Creates Signal Detection Template
T

|Expansw’cn Flow - Analyst Creates New Event from Copy|

[Expansion Flow - Analyst Refreshes Displayed Data

éxpanswon Flow - Analyst Loads Additional Waveforms

Expansion Flow - Analyst Displays Predicted Signal Detections

This flow shows the actions an Analyst can perform as part of refining an Event.

71



Operation Descriptions

None
Expansion Flow - Analyst Selects Different Event Hypothesis

£l Expansion Flow - Analyst Selects Different Event Hypothesis

= :Analyst ‘Refines Event :Event History = :Event
T Display Display T

1: Select to View All Event pr_otheses For Event ()

2: Open ()

3: Gef List of All Event Hypotheses ()

4: Show Event Hypotheses History ()

5: Select Event Hypothesis ()

6: Return Selected Event Hypothesis ()

7: Close ()
| 8: Close Event ()
Expansion Flow - Refines Event Display - Close Event | EREtbE e ent
. hypathesis
... argument, pass in
........... S the one the Analyst
| e :
9: Open Event ( event, event hypeth&sis just selected,

e

Expansion Flow - Refines Event Display - Open Event

This flow shows the Analyst selecting to refine a different Event Hypothesis for the Event (other
than the current one).

Operation Descriptions

72



Operation: Refines Event Display::Open Event()
Open the given Event for refinement in the current processing stage, using the given Event
Hypothesis as a starting point.

Operation: Event::Get List of All Event Hypotheses()
Return a list of all the Event Hypothesis for the given Event, including summary information
such as the processing stage and which Event Hypotheses have been designated as preferred.

Expansion Flow - Analyst Saves Event Hypothesis

] Expansion Flow - Analyst Saves Event Hypothesis

g :Analyst ‘Refines Event
T Display

1: Select to Save ( event completion status, mark hypothesis as preferred )

Analyst not allowed to specify status of "Complete” if
- association conflicts exist for this event.

-

2: Save Event Hypothesis ( e'.rerJ;,H'fpothesis, event completion status, mark hypothesis preferred, processing context )

s

NI““"\ |
Expansion Flow - Refines Event Display - 'S“aﬂ.fglg_\'ent Hypothesis

s
s

.o,

e, Usea processing context
" with persistent storage and
global visibility.

This flow shows how the Analyst saves the event hypothesis they are refining to persistent
storage and makes it visible to other Analysts. Once the event hypothesis is saved to persistent
storage it can never be modified again (but the Analyst can create a new event hypothesis to
further refine the event). When saving the event, the Analyst specifies the completion status for
the event (see Event Completion Status class on diagram "Classes - Event") and whether to mark
the hypothesis as the preferred one for the event. The Analyst may mark any Event Hypothesis
as preferred for an Event while refining the Event (see “Expansion Flow — Analyst Sets Preferred
Hypothesis for Event”). This marking supersedes any previous preferred marking for the same
Event and Processing Stage. Association Conflict Checker continuously checks for and keeps
track of event conflicts as the Analyst associates Signal Detection Hypotheses to Event
Hypotheses (see “Expansion Flow — Association Conflict Checker — Check for Conflicts”). The
Analyst may only mark an Event complete when it’s preferred Event Hypothesis does not
conflict with any other preferred Event Hypothesis from the same Processing Stage. If a conflict
occurs after an Event is saved as Complete then Analyzes Events Display sets the Event back to
Complete with Conflict (see ‘Analyzes Events’ UCR “Alternate Flow — Refines Event Display -
Handle OSD Callbacks™).

73



Operation Descriptions

None

Expansion Flow - Refines Event Display - Save Event Hypothesis

1 Expansion Flow - Refines Event Display - Save Event Hypothesis

) :Refines Event ! :event | :Event | H :association | :Signal
Display Hypothesm —'— H petection
| Hypothesis
N 1: Set Comp!etion Status ( processm|g stage, status } ‘
|
| |
[22 | ‘
| !

I
3
@
o

\
[1f the hypotl’lesws should be marked LIS preferred]

1: Set Preferred Hypothesis Fo? Stage ( event hypothesis, processing stage )

|
|
|
|
|
|
|
|
|
2: Store Event Hypathesis ( event hypotLesss processing context )
I
|
|
|
|
|
|
|
|
|
|
|
|

3: Store Event \( event, processing contexh

e

r

4: Get Associatfons {3

| | |
| ]
! | 1 ‘

; |
f h Associati |
for-sach Asspeiation, | 1: Store Association ( association, processing context )

=y

2: Get Signal Detection Hypothesis ()

s sl _
3: Store Signal Detection Hypothesis { signal detection hypothesis, processtrllg context }
‘ |
4: Get Signal Detection () ‘

‘ |

5: Store Signal Detection { signal detection, processihg context )

[if signal detection is on an unsaved waveform]

1: Store Waveform ( waveform, processing context )

|
|
|
|
|
|
|
.
!
|
|
|

S: Find UnsJaved Rejected Signal Associations ()

T
| |
| |

i ; . 6: Store Association { association, prochsing context ) |

L \ |

| ™
Finds Signal Detection Associations
representing prior associations the
Analyst selected to unassociate.

=S S P

This flow shows how Refines Event Display saves an Event Hypothesis. This flow is provided

74



parameters telling it which hypothesis to save, the event completion status to use, whether the
event hypothesis is the preferred hypothesis for the event, and the processing context to use when
storing the hypothesis in the OSD. To support tracking Event History, Refines Event Display
adds the Event Hypothesis to the parent Event. Refines Event Display also sets the Event’s
completion status and, if necessary, marks the hypothesis as preferred for the event. The display
then stores the Event, Event Hypothesis, Association, Signal Detection, Signal Detection
Hypothesis, and Waveform objects to the OSD.

Operation Descriptions

Operation: OSD::Store Event Hypothesis()

Store the given Event Hypothesis with the given lifespan (persistent vs. transient) and visibility
(private vs. global) as specified by the given Processing Context and notify relevant subscribers
via callbacks.

Operation: OSD::Store Event()
Store the given Event with the given lifespan (persistent vs. transient) and visibility (private vs.
global) as specified by the given Processing Context and notify relevant subscribers via

callbacks.

Operation: Event::Set Completion Status()
Set the Event Completion Status of an Event in the given processing stage to the given value.

Operation: OSD::Store Waveform()

Store the given Waveform with the given lifespan (persistent vs. transient) and visibility (private
vs. global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: OSD::Store Signal Detection()

Store the given Signal Detection with the given lifespan (persistent vs. transient) and visibility
(private vs. global) as specified by the given Processing Context and notify relevant subscribers
via callbacks.

75



Expansion Flow - Analyst Saves Waveforms

E']Expansion Flow - Analyst Saves Waveforms

H :hnalyst :Refines Event Hosp
T Display T

1: Select to Save Derived Waveforms ( derived waveforms )

[for each derivied waveform,]

1: Store Waveform ({ waveform, processing context )

T Persistent, global visibility,

This flow shows Refines Event Display saving derived waveforms on Analyst request. The
Analyst may select to save derived waveforms even when there are no signals detected on the
waveforms.

Operation Descriptions
Operation: OSD::Store Waveform()
Store the given Waveform with the given lifespan (persistent vs. transient) and visibility (private

vs. global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

76



Expansion Flow - Analyst Updates Comment for Event Hypothesis

E]1 Expansion Flow - Analyst Updates Comment for Event Hypothesis

= :Analyst ‘Refines Event g ‘Event H:osp
T Display Hypothesis ; T

The Analyst can modify the comment for the current hypothesis at any
time. But once they save the event (i.e. promote to have global
visibility), a new event hypothesis is started (with a new blank
comment].

1: Enter Comment Text () -
= 7 7

2: Update Current/;:mﬁ'r/nent 0

Transient, with private
>l

visibility

3: Store Event Hypothesis ( event hypothesis, processifig

This flow shows how the Analyst updates comments on the Event Hypothesis.

Operation Descriptions

Operation: OSD::Store Event Hypothesis()

Store the given Event Hypothesis with the given lifespan (persistent vs. transient) and visibility

(private vs. global) as specified by the given Processing Context and notify relevant subscribers
via callbacks.

77



Expansion Flow - Analyst Sets Preferred Hypothesis for Event

E] Expansion Flow - Analyst Sets Preferred Hypothesis for Event

= :analyst ‘Refines Event :Event History E :event H:osp
T Display Display T

1: Select to View All Event Hypotheses For Event ()

2: Open ()

Ze

3: Get List of All Event Hypotheses () Just get/show the event
kit g

..., Nypotheses for the current
-~ stage.

o
e
o
.

4: Show Event Hygothe’s"és History ()
1 -

-
5: Select Ev_ent Hypothesis ()
6: Return Selected Event Hypothesis ()
-— 7: Close ()
-

8: Set Preferred Hypothesis For Stage ( event hypothesis, processing stage )
-

. Persistent, with global
o visibility

L et

rY

This flow shows the Analyst designating an event hypothesis as preferred for a specified
processing stage. Marking an hypothesis as preferred causes the event to be immediately stored
in a global context (visible to other analysts). Storing the Event triggers an OSD callback to
Analyzes Events Display which determines if the Event’s new preferred Event Hypothesis is in
conflict and updates the Event Completion Status if necessary (see ‘Analyzes Events’ UCR
“Alternate Flow — Refines Event Display - Handle OSD Callbacks”).

Operation Descriptions

Operation: OSD::Store Event()
Store the given Event with the given lifespan (persistent vs. transient) and visibility (private vs.

global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: Event::Get List of All Event Hypotheses()

Return a list of all the Event Hypothesis for the given Event, including summary information
such as the processing stage and which Event Hypotheses have been designated as preferred.

78



Expansion Flow - Analyst Manages Event Catalogs

E/]Expansion Flow - Analyst Manages Event Catalogs

‘ = Analyst ‘ :Refines Event | :Event | Hosp ‘
| Display Catalog |
| | : |
[if Analyst is updating the Events |isted in an Event Catalolg] |
| 1: Select to Update El).rent Catalog () | |
2: Get Event Catalogs () |

|
|
|
|
|
|
1
|
|
|
| 6: Sto
|
|
|
|
|
|
|
|

4: Select to Add E\teit to Event Catalog ( e\rq'nt catalog )

7: Select to Remoue E ent from Event Catatdg ( event catalog )

3: Display Event Ca{a[ogs {}) |

|
5: Add Event { event E) |

L] |
re|Event Catalog ( event J:atafog, processfng qontex‘t

IR

=
|

| 8: Remove Event ( e\ient}

T||

l g

1: Select to Create EL\rent Catalog ( name, d*scrlpthcn}

[if Anal}rét is creating a new Event Catalog]
1

2: Create ( name, descnptmn )

I 1f
3: Store F.Ent Catalog ( event i/;ata[og

/

-
|

Displays basic information about theEvent
Catalogs and indicates which catalogs
contain the current Event,

Y Persistent, with global
visibility
S

T

9: Store Event Catalog ( event catalog, b(pcbssrng cg{ntex‘t]
!

/

!

processing context )

This flow shows the Analyst updating an Event Catalog by adding and removing Events from the
catalog. The flow also shows the Analyst creating a new Event Catalog with a specified name

and description.

79



Operation Descriptions

None

Expansion Flow - Analyst Rejects Event

1 Expansion Flow - Analyst Rejects Event

= sanalyst g :Refines Event E :event — Event E :assodiation __ :Signal
Display Hypothesis T E petection
Hypothesis
1:/Select to Reject Event ()
—_——
2: Mark As Rejected ()
3: Get Associations ()
L
[for each Association, ]
1: Reject Assodiation ( association )
=
2: Get Signal Detection Hypothesis ()
-
3: Reject Association ( association )
L
4: Mark as Unassociated ( analyst, unassociation time )
.
5: Store Signal Detection Hypothesis ( signal detection hypothesis, processing context )
-

6: Store Association ( association, processing context )

4: Store Event Hypothesis ( event hypothesis, |processing context )

5: Set Preferred Hypothesis For Stage ( event hypothesis, processing stage ) Make the current event hypathesis
| L

the preferred one for the stage.

6: Set Completion Status ( processing stage, status )
- e S€T 1O "Complete”

7: Store Event ( event, processing context )

y

8: Close Event ()

P

Expansion Flow - Refines Event Display - Close Event

H:osp

_‘k\ Persistent, with global
= visibility

Persistent, with global

o VisiBIlEY

This flow shows how the Refines Event Display handles rejecting an event. Rejecting an event
is accomplished by unassociating all signal detection hypotheses from the current event
hypothesis, making the current event hypothesis the preferred hypothesis for the current stage,
saving the Event, Event Hypothesis, Signal Detection Hypothesis, and Association objects, and
closing the Refines Event Display. Unassociating a Signal Detection Hypothesis and an Event
Hypothesis removes the association relationship between the Signal Detection Hypothesis and
the Association class and the association relationship between the Event Hypothesis and
Association class. The Association class still has association relationships to the Signal
Detection Hypothesis and Event Hypothesis classes for tracking event history and provenance.

Operation Descriptions

80



Operation: OSD::Store Event Hypothesis()

Store the given Event Hypothesis with the given lifespan (persistent vs. transient) and visibility
(private vs. global) as specified by the given Processing Context and notify relevant subscribers
via callbacks.

Operation: OSD::Store Event()
Store the given Event with the given lifespan (persistent vs. transient) and visibility (private vs.

global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: Event::Set Completion Status()
Set the Event Completion Status of an Event in the given processing stage to the given value.

Expansion Flow - Analyst Creates Signal Detection Template

E] Expansion Flow - Analyst Creates Signal Detection Template

Q :Analyst Q :Refines Event EI :Signal Detection Q (0SD
T Display Template 3 T 2

1: Select To Create Signal Detection Template ()

If there are unsaved changes the display requires the Analyst to
save the event (see "Expansion Flow - Analyst Saves Event
Hypothesis"). This ensures the system has a record of the event
hypothesis upon which the template was based.

.....

2: Create ( event hggetf'@"sfs)

o

:

3: Store Signal Detection Template ()

y

The flow shows the Analyst creating a new Signal Detection Template from the current Event
Hypothesis. Stored templates may be applied by the Analyst when building a new Event or
associating additional detections to an existing Event Hypothesis (see "Builds Event" UCR).

Operation Descriptions

None

81



Expansion Flow - Analyst Creates New Event from Copy

/] Expansion Flow - Analyst Creates New Event from Copy

| ‘Analyst = :Refines Event m| new eH:Event E new:Event
T Display Hypothesis

1: Create New Event from Copy ()
T If there are unsaved changes the display requires the Analyst to

save the event (see "Alternate Flow - Analyst Saves Event

Hypothesis"). This ensures the system has a record of the original

event hypothesis from which the new one was copied.

2: Create New Event Hypothesis ( event hypothesis )
L Pass the current event hypothesis that is being refined.
T Set the "parent hypothesis” on the new hypothesis to

o

e

™., point back to the original hypothesis.

3: Create ()

¥

4: Save Event Hypothesis ( event hypothesis, event completion status, mark hypothesis preferred, processing context )

]
BN

.,

‘“\

.
[Expansion Flow - Refines E\fent_bt&fl_a)_f - 5ave Event Hypaothesis|

\\\
3%

Pass the new event hypothesis created above (i.e.
the copy). Set event completion status to "In
Progress’, mark the event hypothesis as preferred
for the event, and use a processing context with
transient, private visibility.

This flow shows the Analyst creating a new event by copying the Event they are currently
refining. The Analyst must first save the Event and Event Hypothesis being copied in order to
track provenance of the new Event. Refines Event Display stores the new Event and Event
Hypothesis, triggering OSD callbacks related to the new Event, Event Hypothesis, and
Associations. Analyzes Event Display responds to the callbacks by adding the new Event to the
event list, checking for conflicts between the new and original Events, and marking the conflicts
(see ‘Analyzes Events’ UCR “Alternate Flow — Analyzes Event Display - Handle OSD
Callbacks”™). Since the new Event Hypothesis has Associations to the same Signal Detection
Hypotheses as the original Event Hypothesis, each of the associations is a conflict. The Analyst
will need to refine each event individually to manually resolve these conflicts.

Operation Descriptions

Operation: Event Hypothesis::Create New Event Hypothesis()

Create a copy of the given Event Hypothesis. The copy has all of the same information as the
original (e.g. same detections, location, etc.), with the following exceptions:

- The copy points to the original as its parent
- The copy starts out with an empty Analyst comment

82



Expansion Flow - Analyst Refreshes Displayed Data
E’] Expansion Flow - Analyst Refreshes Displayed Data
= :Analyst ‘Refines Event

Display

|1: Selects to Refresh Displayed Data _(]'

2 R_efresh Displayed Data ()
gL

Also updates subdisplays,
as needed.

This flow shows how the Analyst refreshes his/her display to show the latest waveforms, Signal
Detections and Signal Detection associations. The Analyst needs this capability since late-
arriving waveforms, Signal Detections and Signal Detection associations made by other Analysts
are not automatically displayed to the Analyst. The Analyst is notified when there is new data
that is not shown on the display (see "Alternate Flow - Refines Event Display - Handle OSD
Callbacks"). The Analyst may refresh the display to show that data at any time via this flow.
Note that the display does not need to retrieve the new data from the OSD since it already has it
due to subscriptions with the OSD (see "Expansion Flow - Refines Event Display - Open
Event").

Operation Descriptions

Operation: Refines Event Display::Refresh Displayed Data()
Update displayed waveforms and Signal Detections to reflect the current state within the
processing stage.

83



Expansion Flow - Analyst Loads Additional Waveforms

E'|Expansion Flow - Analyst Loads Additional Waveforms

= ‘Analyst = Waveform H:osp
T Analysis Display T

1: Select to Load A_dﬂitional Waveforms ()

2: Get Available Waveforms { channels, timeframe )

B
.. ...

.

... Get waveforms for all
channels for the selected
timeframe.

3: Display Available Waveforms ()

a—

4; Select Waveforms to Load ()

5: Update Display ()
-

This flow shows the Analyst loading additional waveforms into Waveform Analysis Display.
The Waveform Analysis Display uses the OSD to find all Waveforms stored on the System for a
timeframe corresponding to the Analyst’s current Processing Activity. These Waveforms could
be from Stations not configured for default use in interactive Analysis (see ‘Configures Station
Usage’ UCR). The Analyst selects which Waveforms to load and Waveform Analysis Display
updates itself to display the selected Waveforms.

Operation Descriptions

Operation: OSD::Get Available Waveforms()
The Analyst can retrieve additional waveforms that were received but not configured to be used
during automatic processing.

84



Expansion Flow - Analyst Displays Predicted Signal Detections

ElExpansion Flow - Analyst Displays Predicted Signal Detections

H analyst — ‘Refines Event i :Signal Feature
T 3 Display — Prediction Control

1: Select to Display Predicted Signal Detections ()

------------------------ . Repeat as necessary when
waveforms change

'2: Get Signal Feature Prediction Parameters { event hypothesis identifiers, processing context )

As a Ul convenience the Analyst can
bypass performing these operations,
When this occurs Refines Event Display
invokes Signal Feature Prediction Control
using preconfigured default parameters.

4: Select to Predict Signal Features ()

5: Predict Signal Features ( event hypothesis identffiers, signal feature prediction parameters, processing context )

6: Predict Signal Features Reply ()

_. 7: Update Display ()

]

This flow shows the Analyst displaying predicted signal detections on the Refines Event Display.
The Refines Event Display computes and displays predicted signal detections for all visible
waveforms in all loaded events.

Operation Descriptions
Operation: Refines Event Display::Update Display()
Update the display of the Event Hypothesis that is currently being refined to reflect any changes

that may have occurred. Indicate items that are out-of-date or inconsistent (e.g. beam may be
out-of-date after refining Event location).

85



Expansion Flow - Association Conflict Checker - Check For Conflicts

=] Expansion Flow - Association Conflict Checker - Check For Conflicts

:Association local :Signal [ :association = :Signal O :Event
E  conflict chpy:E\'ent H Detection Detection Hypothesis
Checker Hypothesis Hypothesis T T

1: Get Associated SLQQ,EFI Detection Hypotheses ()

[For each associated signal detection hypaothesis,,]

1: Get Signal Detection ()

: )

2: Get All Signal Detection Hypotheses ()

—

[for each signal detection hypothesis, ]

1: Get Associations ()

.

[for each Association, ]

1: Get Event Hypothesis ()

2:Is Hypothesis Preferred ()

s

3: Get Processing Stage ()

[If event hypothesis is marked as preferred, is in the same prcessing stage as the event hypothesis
being refined, and is not the event hypothesis that is being refined]

1: Note Conflict { event hypothesis 1, signal detection hypothesis 1, event hypothesis 2, signal detection hypothesis 2 )

-

This flow shows how the Association Conflict Checker checks for association conflicts between
the local (unsaved) Event Hypothesis and other Event Hypotheses. The local Event Hypothesis
is input to this flow. The flow returns a list of association conflicts. Note that, by definition, a
conflict can only exist with an Event Hypothesis that is marked as preferred. Note also that each
Event can have at most one Event Hypothesis marked as preferred for each processing stage.

Operation Descriptions

None

86



Expansion Flow - Refines Event Display - Suspend

E'| Expansion Flow - Refines Event Display - Suspend
] :Refines Event Display

1: Suspend Display ()

*_I

The Analyzes Event Display allows multiple Events to be selected for refinement but only one
Refines Event Display can be active at a time. When one Refines Event Display becomes active
the Analyzes Event Display suspends other open Refines Event Displays. While a Refines Event
Display is suspended the display is hidden but the work in progress for an Event is maintained
and the Refines Event display continues to receive OSD callbacks.

Operation Descriptions

Operation: Refines Event Display::Suspend Display()

The Refines Event Display for an Event is suspended when another Refines Event Display is
opened. The suspended display instance retains the work in progress on the Event and continues
to receive OSD callbacks but work on refining the event is temporarily halted and the display is
hidden.

87



Expansion Flow - Refines Event Display - Resume

E'| Expansion Flow - Refines Event Display - Resume
& :Refines Event Display

1: Resume Display ()
|

When the Analyst selects to open a Refines Event Display that was previously opened but
suspended the Analyzes Event Display resumes the selected Refines Event Display. The Refines
Event Display updates and becomes visible allowing the Analyst to continue to refine the Event.

Operation Descriptions
Operation: Refines Event Display::Resume Display()
When the Analyst selects to open a Refines Event Display that was previously opened but

suspended the Analyzes Event Display resumes the selected Refines Event Display. The Refines
Event Display updates and becomes visible allowing the Analyst to continue to refine the Event.

88



Alternate Flow - Refines Event Display - Handle OSD Callbacks

/] Alternate Flow - Refines Event Display - Handle OSD Callbacks

H:osp ! Refines Event Display :Association Conflict
play )
T : T Checker

Invoked when a change is made to the current (as yet
= unsaved) event hypothesis.

1: Event Hypothesis Callbagk)"

Automatically update the display to reflect the new values,
since the new values are always the result of actions
performed within the current Processing Context (i.e. the
current Analyst's work session).

Invoked when any Event object in current interval is stored
.. (including the current Event)

i

3: Event Callback {) oo™

4: Warn About Other Analyst Activity For This Event ()

]

5: Association Callback () |
-

6: Check/for Conflicts ( event hypothesis, processing stage )
Y
L ol

Expansion Flow - Association Conflict Checker - Check For Canflicts

7: Display Association Conflicts (/)

Invoked when late data is received, or existing data is
updated (e.g. origin beams recomputed)

8: wWaveform Callback () | T
-

R

9: Update Display Or Inform User Of Stale Data ()

g B If the Analyst has configured the
SRS session to auto-update, then
T automatically display the new/updated
... data. Otherwise, inform the user that
,/----"’""'— the data they are looking at is stale or
| 10: Signal Detection Callback ()| s incomplete,

o
e

11: Update Di_splay’OﬁHform User Of Stale Data ()

Mg
L.g

—

12: Interval Callback ()

13: Warn About Analyst Scan Overlapping This Event ()

e

This flow shows how the Refines Event Display handles various callbacks from the OSD. The
Refines Event Display subscribes for the current Event Hypothesis in order to monitor updates to
it as a result of executed Processing Sequences. The display subscribes for all Events in the
interval in order to monitor other Analyst activity on the current Event and to check for
association conflicts with other Events. The display subscribes for Signal Detections and

&9



Waveforms in order to display updates to that information made by other analysts. The display
subscribes for Intervals to determine if an interval that overlaps the current Event is under active
review by another analyst.

Operation Descriptions

Operation: Refines Event Display::Event Callback()
Callback invoked any time there is a change in the subscribed Event (e.g. a new Event
Hypothesis for the Event is saved, or the preferred Hypothesis for a processing stage changes).

Operation: Refines Event Display::Warn About Other Analyst Activity For This Event()
Warn the current Analyst about another Analyst working on the current Event.

Operation: Refines Event Display::Signal Detection Callback()
Invoked any time the set of Signal Detections that fall within the current time interval changes.
The callback indicates what changed.

Operation: Refines Event Display::Waveform Callback()
Invoked any time new raw or derived waveforms overlapping the time of the Event are received
(e.g. late data, beams).

Operation: Refines Event Display::Event Hypothesis Callback()

Callback invoked whenever portions of the Event Hypothesis are changed by the system. This
callback can only occur as part of automatic processing sequences executed by the Processing
Sequence Control mechanism, since changes made by other Analysts are stored in separate Event
Hypotheses.

Operation: Refines Event Display::Update Display()

Update the display of the Event Hypothesis that is currently being refined to reflect any changes
that may have occurred. Indicate items that are out-of-date or inconsistent (e.g. beam may be
out-of-date after refining Event location).

Operation: Association Conflict Checker::Check for Conflicts()

Checks the given Event Hypothesis against the other Events in the processing stage for
association conflicts. Only check for conflicts between Event Hypotheses marked as preferred.
A conflict exists if a Signal Detection is associated to more than one preferred Hypothesis in the
processing stage.

Operation: Refines Event Display::Warn About Analyst Scan Overlapping This Event()

Warn the Analyst if the interval that overlaps the current Event being refined is under active
review by another Analyst.

90



Expansion Flow - Refines Event Display - Close Event

E'l Expansion Flow - Refines Event Display - Close Event

Display

1: Earn About Unsaved Changes ( }
i
|

[if has unsavéd changes]

‘ ‘Refines Event ‘ | H:osp | ‘ H :event ‘

Transient, with private
i visibility

|
|
|
|
|
|
|
| '_._,,--“"
| /,_..—"i"l
o |
I:iReject Event Hypothesis ( processing contexlt]
" -

‘ ‘

I
|
I
2: Unsubscribe for Event Hypothesis () !

|
_l_l

=
4: Unsubscribe for Waveforms () |
-

3: Unsubscribe for Signal Detections ()

6: Remove Active Analyst { ulser}
I

7: Store Event { event, processing context ) |

= L

—L

B Persistent with global
visibility

8: Unsubscribe for Events ()

|
|
|
|
|
|
|
|
|
T
|
| 5: Unsubscribe for Associations ()
|
|
|
|
|
|
|
|
|
|
I

e

This flow shows what the Refines Event Display does upon closing the current Event.

91



Operation Descriptions

Operation: OSD::Store Event()

Store the given Event with the given lifespan (persistent vs. transient) and visibility (private vs.
global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: OSD::Reject Event Hypothesis()

Remove Event Hypothesis and update Event and associated information for the removed Event
Hypothesis.

State Machine Diagrams

None

SSD Mappings

General:

S-1157: [Objective / Priority 2] The System shall provide the Analyst the capability to view
newly acquired waveform data within 1 minute of acquisition.

S-1296: [ Threshold] The System shall store the processing time period(s) during which each
Waveform QC Mask was applied to the underlying waveform data.

S-1297: [Threshold] The System shall store the Waveform QC Masks applied to the waveform
data used for each waveform processing operation.

S-1298: [ Threshold] The System shall store the channel masked by each Waveform QC Mask.

S-1299: [Threshold] The System shall store the identity of the user or processing stage creating
each Waveform QC Mask.

S-1300: [Threshold] The System shall store the identity of the user or processing stage
modifying each Waveform QC Mask.

S-1301: [Threshold] The System shall store the identity of the user or processing stage removing
each Waveform QC Mask.

S-1302: [ Threshold] The System shall store the time of each Waveform QC Mask creation.
S-1303: [ Threshold] The System shall store the time of each Waveform QC Mask removal.
S-1304: [ Threshold] The System shall store the time of each Waveform QC Mask modification.

S-1306: [ Threshold] The System shall store the Analyst's rationale for creating a Waveform QC

92



Mask.

S-1307: [Threshold] The System shall store the Analyst's rationale for modifying a Waveform
QC Mask.

S-1308: [Threshold] The System shall store the Analyst's rationale for removing a Waveform
QC Mask.

S-1386: [ Threshold] The System shall store the beam definition parameters for all beams.

S-1393: [ Threshold] The System shall store all derived channels related to one or more signal
detections.

S-1394: [ Threshold] The System shall store derived waveform data with no related signal
detections for the Operational Processing Time Period.

S-1421: [Threshold] The System shall store all signal detections.

S-1438: [ Threshold] The System shall store time domain measurements.

S-1450: [ Threshold] The System shall store polarization feature measurements.

S-1465: [ Threshold] The System shall store frequency domain waveform measurements.
S-1486: [ Threshold] The System shall store fk spectra measurements.

S-1532: [Threshold] The System shall provide the Analyst the capability to reject an event
hypothesis.

S-1574: [Threshold] The System shall provide the System User the capability to view station
quality metrics.

S-1576: [ Threshold] The System shall store the station quality metrics for all stations for each
event hypothesis.

S-1580: [Threshold] The System shall recompute the event hypothesis quality metric for an
event hypothesis when any of the event hypothesis quality statistics used to calculate the event

hypothesis quality metric are updated.

S-1586: [ Threshold] The System shall provide the Analyst the capability to view event
hypothesis quality metrics.

S-1588: [ Threshold] The System shall store the event quality metric for each event hypothesis.

S-1616: [ Threshold] The System shall provide the Analyst the capability to designate the
preferred event hypothesis for each event.

93



S-1618: [ Threshold] The System shall store up to 300 unique event hypotheses for each event.

S-1619: [Threshold] The System shall store the confidence level of each computed event
hypothesis location uncertainty bound.

S-1620: [ Threshold] The System shall store the type (i.e., confidence, coverage, or k-weighted
with the associated weights) of each location uncertainty bound.

S-1621: [Threshold] The System shall store modeling uncertainties for model based predictions
of signal detection measurements.

S-1622: [ Threshold] The System shall store uncertainties for observed signal detection
measurements.

S-1623: [Threshold] The System shall store the sum squared weighted residual for each event
hypothesis location.

S-1624: [Threshold] The System shall store the defining/non-defining state for each signal
detection measurement associated to a stored event hypothesis.

S-1625: [Threshold] The System shall store a preferred event hypothesis for each event for each
processing stage.

S-1626: [ Threshold] The System shall store the processing stage during which each event
hypothesis location was created.

S-1627: [Threshold] The System shall store the processing stage during which an event
hypothesis is modified.

S-1628: [Threshold] The System shall store the processing stage that rejected an event.

S-1644: [Threshold] The System shall provide the Analyst the capability to manually align
waveforms.

S-1645: [Threshold] The System shall provide the Analyst the capability to align waveforms
based on travel time differences.

S-1646: [ Threshold] The System shall provide the Analyst the capability to align waveforms
based on optimal lag calculated by waveform cross correlation.

S-1663: [ Threshold] The System shall store uncertainties for all event hypothesis magnitude
estimates.

S-1664: [ Threshold] The System shall store each single station magnitude estimate for each
event hypothesis.

94



S-1665: [ Threshold] The System shall store each network magnitude estimate for each event
hypothesis.

S-1666: [ Threshold] The System shall store the defining/non-defining state for each station
magnitude associated to a stored event hypothesis.

S-1711: [Objective / Priority 1] The System shall store the type of ground motion used by
moment tensor calculations.

S-1712: [Objective / Priority 1] The System shall store the filter applied to observed and
synthetic waveforms when computing moment tensor solutions.

S-1713: [Objective / Priority 1] The System shall store the Green functions used to compute a
moment tensor solution.

S-1714: [Objective / Priority 1] The System shall store the Earth models used to compute a
moment tensor solution.

S-1715: [Objective / Priority 1] The System shall store the elements of moment tensor solutions.

S-1716: [Objective / Priority 1] The System shall store the percentage of deviatoric moment
tensor solutions belonging to the double couple components.

S-1717: [Objective / Priority 1] The System shall store the double couple fault plane solution
computed from a moment tensor solution.

S-1718: [Objective / Priority 1] The System shall store the scalar seismic moment computed
from a moment tensor solution.

S-1719: [Objective / Priority 1] The System shall store the station specific goodness of fit
between theoretical and observed waveforms for moment tensor solutions.

S-1735: [Objective / Priority 1] The System shall store the € value computed for moment tensor
solutions.

S-1736: [Objective / Priority 1] The System shall store the k value computed for moment tensor
solutions.

S-1737: [Objective / Priority 1] The System shall store the uncertainty bounds on € and k
computed for moment tensor solutions.

S-1738: [Objective / Priority 1] The System shall store the confidence level of uncertainty
bounds on ¢ and k computed for moment tensor solutions.

S-1816: [ Threshold] The System shall store the earth model and version used to compute an

95



earth model prediction.
S-1817: [Threshold] The System shall store the corrections applied to earth model predictions.

S-1818: [ Threshold] The System shall store the correction surface used to correct an earth model
prediction.

S-1819: [Threshold] The System shall store the predicted slowness computed from a basemodel.

S-1820: [Threshold] The System shall store the uncertainties of a predicted slowness computed
using a basemodel.

S-1821: [Threshold] The System shall store the predicted azimuths computed using a phase-
specific basemodel.

S-1822: [Threshold] The System shall store the uncertainties of predicted azimuths computed
using a basemodel.

S-1823: [Threshold] The System shall store the predicted travel-times computed from a
basemodel.

S-1824: [Threshold] The System shall store the uncertainties of predicted travel-times computed
using a basemodel.

S-1842: [Threshold] The System shall store predicted amplitude attenuation.
S-1843: [Threshold] The System shall store predicted amplitude attenuation uncertainties.

S-1876: [ Threshold] The System shall notify Analysts working in a common processing stage if
they are concurrently modifying event hypotheses for an event.

S-1877: [Threshold] The System shall notify Analysts working in a common processing stage if
they are concurrently modifying signal detections in the same analysis time interval.

S-1878: [Threshold] The System shall provide the Analyst the capability to access and view all
waveform data stored on the System.

S-1885: [ Threshold] The System shall display 24 hours of continuous waveform data before the
waveform displays flatline.

S-1915: [Threshold] The System shall provide the Analyst the capability to process data without
altering another Analyst's existing solution.

S-1917: [Threshold] The System shall provide the Analyst the capability to add or remove an
event from an event catalog.

96



S-1920: [ Threshold] The System shall provide the Analyst the capability to view any saved event
hypothesis.

S-1921: [Threshold] The System shall provide the Analyst the capability to enter comments for
an event hypothesis.

S-1922: [Threshold] The System shall provide the Analyst the capability to view comments for
an event hypothesis.

S-1927: [Threshold] The System shall provide the Analyst the capability to select signal
detections as processing input based on a time interval for an entire network during an analysis
session.

S-1928: [Threshold] The System shall provide the Analyst the capability to select signal
detections as processing input based on a time interval for a selected subset of stations during an

analysis session.

S-1929: [Threshold] The System shall provide the Analyst the capability to individually select
signal detections as processing input during an analysis session.

S-1930: [Threshold] The System shall provide the Analyst the capability to store new event
hypotheses created during interactive processing.

S-1947: [Threshold] The System shall implement user interfaces according to the User Interface
Guidelines.

S-1967: [Threshold] The System shall store results from all stages of data processing.

S-1985: [Threshold] The System shall provide the System User the capability to view event
hypothesis data on an interactive map.

S-1996: [ Threshold] The System shall provide the System User the capability to access
geospatial data.

S-2042: [Threshold] The System shall store automatic and interactive processing parameters in
the database.

S-2043: [Threshold] The System shall store automatic and interactive processing results.

S-2044: [Threshold] The System shall store the relation of processing results to processing
parameters in the database.

S-2164: [ Threshold] The System shall access requested waveform data within one (1) minute of
receipt by the Data Processing Partition.

S-2167: [ Threshold] The System shall write a 6 hour or less time block of 40Hz waveform data

97



within the Operational Processing Time Period with a maximum 5 second latency. (Goal: 1
second.)

S-2168: [ Threshold] The System shall read a 6 hour or less time block of 40Hz waveform data
outside the Operational Processing Time Period with a maximum 10 second latency. (Goal: 2
seconds.)

S-2169: [ Threshold] The System shall read a 6 hour or less time block of 40Hz waveform data
within the Operational Processing Time Period with a maximum 5 second latency. (Goal: 1
second.)

S-2170: [Threshold] The System shall write a 6 hour or less time block of 40Hz waveform data
outside the Operational Processing Time Period with a maximum 10 second latency. (Goal: 2
seconds.)

S-2223: [Threshold] The System shall store all data and derived processing results to persistent
storage as soon as the data and/or derived processing results are available.

S-2417: [Threshold] The System shall store hydroacoustic signal detection groups

S-2603: [ Threshold] The System shall provide the System User the capability to access
requested waveform data.

S-2604: [ Threshold] The System shall provide the Analyst the capability to access late-arriving
waveform data within one (1) minute of receipt by the Data Processing Partition.

S-3025: [Threshold] The System shall provide the Analyst the capability to create a signal
detection template from an existing event.

S-5708: [Threshold] The System shall read a 6 hour or less time block of processing results
within the Operational Processing Time Period with a maximum 5 second latency. (Goal: 1
second.)

S-5709: [Threshold] The System shall write a 6 hour or less time block of processing results
within the Operational Processing Time Period with a maximum 5 second latency. (Goal: 1
second.)

S-5712: [Threshold] The System shall read a 6 hour or less time block of processing results
outside the Operational Processing Time Period with a maximum 10 second latency. (Goal: 2
seconds.)

S-5713: [Threshold] The System shall write a 6 hour or less time block of processing results
from outside the Operational Processing Time Period with a maximum 10 second latency. (Goal:

2 seconds.)

S-5715: [Threshold] The System shall store wind velocity (including uncertainty) computed

98



from meteorological models.

S-5716: [Threshold] The System shall store temperature (including uncertainty) computed from
meteorological models.

S-5717: [ Extensibility] The System shall store gravity wave corrections to temperature
predictions.

S-5720: [Threshold] The System shall store spectrograms.
S-5722: [Threshold] The System shall store power spectral density.

S-6469: [ Threshold] The System shall store detection feature maps.

IDC Specific:

S-5612: [Threshold] The System shall provide the Analyst the capability to request auxiliary
seismic waveform data from the Data Acquisition Partition.

S-5795: [Threshold] The System shall compute Event Consistency checks when an event
hypothesis is saved.

Notes

General:

1. In this UCR and all of its child UCRs (e.g. "Refines Event Location", "Refines Event
Magnitude", etc.), the display classes store computed results to transient storage via the OSD
mechanism as the event is refined in order to trigger execution of configured processing
sequences. These processing sequences are configured by the System Maintainer (see "Defines
Processing Sequence" UCR), and are automatically executed by the Processing Sequence
Control mechanism in response to OSD callbacks (the Processing Sequence Control mechanism
is shown in "System Detects Events" UCR). These changes to the Event Hypothesis are stored
with private visibility such that the changes are accessible only to the Analyst work session
where the changes are being made; other Analysts cannot see the updates until the Analyst
chooses to save the Event Hypothesis, at which time the Event Hypothesis is stored to persistent
storage via the OSD mechanism. The storage of an Event Hypothesis to persistent storage may
trigger additional processing sequences, as defined by the System Maintainer.

2. The Analyst may undo/redo editing operations while refining the event, but only back to the
last save.

3. See "Marks Processing Stage Complete" UCR for a state machine diagram for Event
Completion Status.

4. This UCR covers creation of signal detection templates. The Analyst applies such templates

99



when building new events (see "Builds Event" and "Scans Waveforms and Unassociated
Detections" UCRs).

5. When the Refines Event Display is suspended the instance of the display maintains the
current state of the refined Event and continues to receive OSD callbacks. If performance
concerns become a factor then suspended displays could unsubscribe from OSD callbacks and
saved transiently.

IDC Specific:
1. The Analyst uses “Expansion Flow — Analyst Loads Additional Waveforms” to request and
load auxiliary station waveform data from the Data Acquisition Partition.

2. The System Maintainer may use Defines Processing Sequence Display (see ‘Defines

Processing Sequence’ UCR) to configure a processing sequence to perform event consistency
calculations after an event is saved (see ‘System Accesses Event Consistency’ UCR).

100



IDC Use Case Realization Report
UCR-08.05 Views Event History

Use Case Description

This architecturally significant use case describes how the System User observes the change
history of a given event. The change history is a series of one or more saved event hypotheses.
System Users view all the event hypotheses and the set of location solutions for each hypothesis.
The System User views the relationship between event hypotheses including the preferred
hypothesis for each processing stage. The event change history persists across work sessions for
subsequent review.

This use case is architecturally significant because it describes viewing and comparing multiple
versions of an event to review the history of how an event was formed and what data were
available at each stage of event formation.

Architecture Description

The System User opens the Views Event History Display to select and view an Event and the
related Event Hypotheses. The System User selects an Event using the Event Search Display.
The System User selects an event and opens the Event History Display. The Event History
Display shows all the Event Hypotheses for an Event and the relationships between hypotheses
stored by the OSD. The System User can select to view the information for an individual Event
Hypothesis using the View Event Display or compare multiple hypotheses using the Event
Hypothesis Comparison Display.

101



Use Case Diagram

Supports Gperations

Views Event History
System User

Class Diagrams

Classes - Displays
adisplay=
Q Views Event History Display
{from Event Views)
=displays i | adisplays | | adisplays | I «displays
Q Events Search Display |-------------= nf Q Event History Display E View Event Display Q Event Hypothesis
(from Event Views) | | {from Event Views) | (from Event Views) Comparison Display

{from Event Views)

This diagram shows the display classes for selecting and viewing Events and Event Hypotheses.
The System User uses the Event Search Display to select an Event. The Event History Display
shows the relationships between Event Hypotheses for an Event. The View Event Display
shows detailed information about an Event Hypothesis. The System User uses the Event
Hypothesis Comparison Display to compare multiple hypotheses.

Classes - Event

=entitys | =entitys [ | sentitys

=] Event | E Event Hypothesis . £ Processing Stage
{from Event Elements) N = (from Event Elements) | 1 | Urom Process Control Elements) |
H’l! preferred hypothesis per stage E-E‘ is rejected 5

1

parent hypothesis

This diagram shows the relationships between Events and Event Hypotheses and the
relationships between hypotheses. Each hypothesis is related to its parent hypothesis that was
the basis for the child hypothesis. The parent hypothesis can be for the same event or a different
event.

102



Classes - Event History Display

=entitys
] Event
] {from Event Elements)
=boundarys i adisplays
] system User |~~~ = [ Event History Display

(from Event Views)

=entitys
E Event Hypothesis
{from Event Elements)

This diagram shows the Event History Display and related classes.
Classes - Event Hypotheses Comparison Display

=boundary» J «=displays amechanisms
E System User |---------v- = Q Event Hypothesis Comparison Display |- ----------------% Q osD
{from Boundary) ({from Event Views) { {from Mechanism Layer)
«entitys xentitys =entitys =entitys
=] Event Hypothesis £ signal Detection ] waveform =] waveform QC Mask
(from Event Elements) ‘ {from Signal Detection Elements) (from Signal Enhancement Elements) {from Data Quality Elements)

This diagram shows the Event Hypothesis Comparison Display and related classes.

Classes - Event Search Display

=boundary= i | edisplays ) iy
Q System User |-~ """ 777oC 2 E Events Search Display [---------------3 Q Event
] {from Event Views) {from Event Elements)
«mechanisms=
£ osp

| (from Mechanism Layer)

This diagram shows the Event Search Display. The System User uses the Event Search Display
to select Events and retrieve the Events from the OSD.

103



Classes - View Event Display

=boundarys | «display»
& System User [------------------Z > [ View Event Display
| (from Event Views)

=entitys il [ xentit',mr .;entit',m - =entitys
Q Event EI Event Hypothesis Q Signal Detection Q Waveform
L (from Event Elements) L (from Event Elements) (from Signal Detection Elements] | (from Signal Enhancement Elements)
This diagram shows the View Event Display and related classes that provide information about
Events and Event Hypotheses.

Class Descriptions

<<boundary>> System User
Represents the System User actor.

<<display>> Events Search Display
Display that provides the Analyst the ability to search for similar Events and store Similar Events
Search Results.

<<entity>> Event

Represents information about an Event. Keeps track of all the Event Hypotheses for the Event,
which Event Hypothesis is the preferred one for each processing stage, the active analysts for the
Event (i.e. whether the Event is under "active review"), whether the Event is "complete" for each
processing stage, and other Event-related information.

<<entity>> Event Hypothesis

Represents geophysical information about an Event as determined by an Analyst or through
pipeline processing. There can be multiple Event Hypotheses for the same Event (e.g. different
associated Signal Detection Hypotheses, different location solutions).

<<entity>> Processing Stage

Represents a named stage of data processing, which may be part of the System Maintainer-
defined workflow or an Analyst-defined stage outside the workflow. All Processing Results are
associated to a Processing Stage.

<<entity>> Signal Detection

Represents information about a Signal Detection and keeps track of all the Signal Detection
Hypotheses for the Signal Detection. Represents information about a Signal Detection and keeps
track of all the Signal Detection Hypotheses for the Signal Detection. For an unassociated Signal
Detection the preferred Signal Detection Hypothesis is the most recently created Signal
Detection Hypothesis. For an associated Signal Detection the preferred Signal Detection
Hypothesis is the one associated to a preferred Event Hypothesis.

<<entity>> Waveform

104



A Waveform represents a time-series of data from a Channel.

<<entity>> Waveform QC Mask

Represents information about a waveform quality control issue (e.g. data gap, repeated amplitude
values, amplitude spikes, linear trends, calibration signals, invalid gain, noisy channels,
authentication failures, Analyst defined, etc.) occurring on a waveform. Waveform QC Mask
has attributes describing the type of quality issue it is masking, the waveform data time period it
masks, and the enabled time period describing when the mask is (or was) used. Waveform QC
Mask tracks the valid time for data provenance purposes since some masks will be created for
transient quality issues (e.g. missing data that is later acquired).

<<mechanism>> OSD
Represents the Object Storage and Distribution mechanism for storing and distributing data
objects internally within the system.

Sequence Diagrams

Flow Overview

gt Flow Overview

Main Flow - Views |
Event History

*Expansion Flow - View Event Display - Open

105



Main Flow - Views Event History

7] Main Flow - Views Event History

| Q :System | Views :Events Q 0sD ‘ | Q :Event History | | Q :Event | Q View Event | :Event
User Q Event ‘ Q Search B Display e D:splay ‘ Hypothesis
T History Display Comparisen
Display | Display
1: Open ()

3 Display Search Parameters ()

=

T

L ! I

| 32.' QOpen (event ) | | |
—

|

|

|

|

4 Enter Searfh Parameters )

|
[ |
,},E Find Events Matdung Selection Criteria { event search Pamm.eters]
A4 |
/ 6: Display SeF+h Results {) ‘
|

r i !
/ b : | |
| T Selec;l [ve}ré 4] | ‘ 8 Open () | ‘

o Ve | 9 Get List of All E\Lnt Hypotheses (] |
The System User performs these | EEEE—

operations as many times as desired. The |_J |
System User may perform the operations ‘ |

in any order, with the exceptions that e "
event search parameters must be entered {10: Show Event Hypotheses Hlstonr(_:

before selecting events and events must ot | | _i ‘
be selected before selecting event "41; Close Display () [L] !
hypotheses, ﬁl\ | '

. r I

> |
12: Select Eve\wypoihesis to View )
[ T 13: Open { event hypothesis )

\
o \ i | !
| |

E Eanswon Flow - View Event Display - Open|

| T
14 Sefe‘t Multiple Event Hypotheses to Compare () it

7 I 15: Open ( event h_vpothesls list)

Event hypotheses

16: Cl
ose () T from the same event

The Event Hypothesis Comparison
Display is described in "Compares
Event " UCR.

This flow shows how the System User selects an Event and views the event history. Optionally,
the System User may view a read-only copy of a selected Event Hypothesis or compare multiple
Event Hypotheses.

Operation Descriptions

Operation: Event::Get List of All Event Hypotheses()
Return a list of all the Event Hypothesis for the given Event, including summary information
such as the processing stage and which Event Hypotheses have been designated as preferred.

106



Expansion Flow - View Event Display - Open

|£| Expansicn Flow - View Event Display - Open

Wiew E el b] Q :Event | Q :Event
Event . 1 ; | Hypothesis
Display ! T -

(1: Get Event ()
| E—

. 2: Get Signal Detections ( timeframe )

' | || For each signal detection get the associated
| 3: Get Wa\refq ms (channels,“tin_wehamg] derived waveforms. For stations with no
| | el | detections get the origin beam. Timeframes
L] [l here are based on the time in the event
’ | o] || location. As possible optimization, could use
4 Get Waveform OC Masks (timeframe ) earth model to predict travel times in crder to

| minimize these timeframes,

| 5: Get Comment|History ()

L |

| 6: Get Preferred Location ()

"r

| 7: Update Display ()

1

This flow shows how the View Event Display is created and the classes contributing information
for the display.

Operation Descriptions

Operation: Event::Get Comment History()
Return all Analyst-entered comments associated with the Event.

State Machine Diagrams

None

SSD Mappings

General:

S-1292: [Threshold] The System shall provide the System User the capability to compare
Waveform QC Masks generated by each processing stage for selected points in the processing
history.

107



S-1926: [ Threshold] The System shall provide the System User the capability to view the
complete history of an event.

S-1947: [Threshold] The System shall implement user interfaces according to the User Interface
Guidelines.

S-1985: [Threshold] The System shall provide the System User the capability to view event
hypothesis data on an interactive map.

S-1996: [ Threshold] The System shall provide the System User the capability to access
geospatial data.

S-1999: [Threshold] The System shall provide the System User the capability to view tabular
listings of the results of spatial processing of geospatial data.

S-2040: [Threshold] The System shall provide the System User the capability to retrieve stored
processing results from computations.

Notes

General:

1. View Event Display is a read-only display of an Event Hypothesis and related information.
The event hypothesis information is generated in 'System Detects Event' and 'Refines Event' UCs
and includes station quality metrics, event hypothesis quality metrics, map displays including
geographic regions and geospatial data, and both unassociated and associated signal detections.
Displays will be similar to Analyst displays for 'Refines Event' UC.

2. Event Hypothesis Comparison Display shows QC Masks for associated waveforms per S-
1292.

108



This page intentionally left blank.

109



@ Sandia National Laboratories

110



